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Abstract

Modern applications are centered around using large-scale distributed storage systems for
storing and retrieving data. Storage systems provide different levels of consistency that corre-
spond to different trade-offs between consistency and throughput. The weaker the consistency
is, the more behaviors the storage is allowed to exhibit. In this thesis we address the problem
of specifying and verifying a (distributed) storage system with respect to a given consistency
model from three different perspectives.

The first problem we focus is studying the correctness of applications using database
and isolation levels – database consistency models. We propose Stateless Model Checking
algorithms that rely on Dynamic Partial Order Reduction. These algorithms work for a
number of widely-used weak isolation levels, including Read Committed, Causal Consistency,
Snapshot Isolation and Serializability. We show that they are complete, sound and optimal,
and run with polynomial memory consumption in all cases. We report on an implementation
of these algorithms in the context of Java Pathfinder applied to a number of challenging
applications drawn from the literature of distributed databases.

The second question we focus on is the problem of testing isolation level implementations
in databases, particularly when databases are accessed by transactions formed of SQL queries
using multiple isolation levels at the same time. We show that many restrictions of this
problem are NP-complete and provide an algorithm which is exponential-time in the worst-
case, polynomial-time in relevant cases, and practically efficient.

The third problem we study is the fundamental tension between availability and consis-
tency that shapes the design of distributed storage systems. Classical results capture extreme
points of this trade-off: the CAP theorem shows that strong models like linearizability preclude
availability under partitions, while weak models like causal consistency remain implementable
without coordination. These theorems apply to simple read-write interfaces, leaving open a
precise explanation of the combinations of object semantics and consistency models that admit
available implementations. We develop a general semantic framework in which storage speci-
fications combine operation semantics and consistency models. The framework encompasses
a broad range of objects (key-value stores, counters, sets, CRDTs, and SQL databases) and
consistency models (from causal consistency and sequential consistency to snapshot isolation
and bounded staleness).

Within this framework, we prove the Arbitration-Free Consistency (AFC) theorem, show-
ing that an object specification within a consistency model admits an available implementation
if and only if it is arbitration-free, that is, it does not require a total arbitration order to resolve
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visibility or read dependencies. The AFC theorem unifies and generalizes previous results,
revealing arbitration-freedom as the fundamental property that delineates coordination-free
consistency from inherently synchronized behavior.

Keywords: Verification, Databases, Concurrency, Distributed Systems, Model-Checking,
Testing, CAP Theorem, Isolation Levels, Partial Order Reduction
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Résumé

Les applications modernes sont conçues autour de l’utilisation de systèmes de stockage dis-
tribués à grande échelle pour le stockage et la récupération des données. Les systèmes de
stockage offrent différents niveaux de cohérence qui correspondent à différents compromis
entre cohérence et débit. Plus la cohérence est faible, plus le stockage peut exhiber de com-
portements. Dans cette thèse, nous abordons le problème de spécifier et de vérifier un système
de stockage (distribué) par rapport à un modèle de cohérence donné sous trois perspectives
différentes.

Le premier problème sur lequel nous nous concentrons est l’étude de la correction des
applications utilisant des bases de données et des niveaux d’isolation – modèles de cohérence
des bases de données. Nous proposons des algorithmes de Vérification de Modèles sans État
qui reposent sur la Réduction Dynamique par Ordre Partiel. Ces algorithmes fonctionnent
pour un certain nombre de niveaux d’isolation faibles largement utilisés, y compris Read
Committed, Causal Consistency, Snapshot Isolation et Serializability. Nous montrons qu’ils
sont complets, corrects et optimaux, et qu’ils s’exécutent avec une consommation mémoire
polynomiale dans tous les cas. Nous présentons une implémentation de ces algorithmes dans le
cadre de Java Pathfinder, appliquée à plusieurs applications complexes issues de la littérature
sur les bases de données distribuées.

La deuxième question que nous abordons concerne le problème du test des implémentations
des niveaux d’isolation dans les bases de données, en particulier lorsque celles-ci sont accédées
par des transactions composées de requêtes SQL utilisant plusieurs niveaux d’isolation simul-
tanément. Nous montrons que de nombreuses variantes de ce problème sont NP-completes et
proposons un algorithme dont la complexité est exponentielle dans le pire des cas, polynomiale
dans les cas pertinents, et efficace en pratique.

Le troisième problème que nous étudions est la tension fondamentale entre disponibilité
et cohérence qui façonne la conception des systèmes de stockage distribués. Les résultats
classiques capturent les points extrêmes de ce compromis : le théorème CAP montre que des
modèles forts comme la linéarisabilité excluent la disponibilité en cas de partitions, tandis
que des modèles faibles comme la cohérence causale restent implémentables sans coordina-
tion. Ces théorèmes s’appliquent aux interfaces simples lecture-écriture, laissant ouverte une
explication précise des combinaisons de sémantiques d’objets et de modèles de cohérence qui
permettent des implémentations disponibles. Nous développons un cadre sémantique général
dans lequel les spécifications de stockage combinent les sémantiques des opérations et les mod-
èles de cohérence. Ce cadre englobe un large éventail d’objets (magasins clé-valeur, compteurs,
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ensembles, CRDTs et bases de données SQL) et de modèles de cohérence (de la cohérence
causale et séquentielle à l’isolation par instantané et la staleness bornée).

Dans ce cadre, nous démontrons le théorème d’Arbitration-Free Consistency (AFC), mon-
trant qu’une spécification d’objet au sein d’un modèle de cohérence admet une implémentation
disponible si et seulement si elle est sans arbitrage, c’est-à-dire qu’elle ne nécessite pas d’ordre
total d’arbitrage pour résoudre les dépendances de visibilité ou de lecture. Le théorème AFC
unifie et généralise les résultats précédents, révélant que l’absence d’arbitrage est la propriété
fondamentale qui distingue la cohérence sans coordination du comportement nécessitant une
synchronisation intrinsèque.

Mots-clés: Vérification, Bases de données, Concurrence, Systèmes distribués, Vérification
de modèles, Tests, Théorème CAP, Niveaux d’isolation, Réduction par ordre partiel
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Résumé substantiel en français

Le stockage des données ne consiste plus à écrire des données sur un seul disque avec un unique
point d’accès. Les applications modernes exigent non seulement la fiabilité des données, mais
aussi des accès concurrents à haut débit. Par exemple, les applications liées aux chaînes
d’approvisionnement, au secteur bancaire, etc., utilisent des bases de données relationnelles
distribuées pour stocker et traiter les données, tandis que les applications comme les logiciels
de réseaux sociaux et les plateformes de commerce en ligne utilisent des systèmes de stockage
en nuage (tels qu’Azure Cosmos DB [92], Amazon DynamoDB [50], Facebook TAO [37]. . . ).

Offrir un traitement à haut débit implique malheureusement un coût inévitable :
l’affaiblissement des garanties de cohérence fournies aux utilisateurs. Pour illustrer ce
phénomène, considérons une application bancaire où deux utilisateurs concurrents transfèrent
de l’argent vers le même compte ; chacun lit le solde du compte et l’incrémente en conséquence.
Pour garantir que les deux transferts aient lieu et que le solde total soit correctement mis à
jour, l’un des expéditeurs doit attendre l’autre. Inversement, garantir uniquement des formes
faibles de cohérence peut améliorer le débit, mais au prix de permettre que des clients connec-
tés simultanément observent différentes versions d’une même donnée. En reprenant l’exemple,
si seules des garanties faibles sont appliquées, les deux clients peuvent observer l’état initial,
avant exécution, et mettre à jour le solde du compte uniquement en fonction de l’état qu’ils
ont observé, sans remarquer l’autre transfert concurrent. Le résultat d’une telle exécution est
que le solde du compte peut ne refléter qu’un seul des deux transferts, les utilisateurs pouvant
potentiellement perdre de l’argent !

Dans le cas particulier des bases de données, ces “anomalies” peuvent être évitées en util-
isant un niveau d’isolation fort, tel que la Sérialisabilité [90], qui offre essentiellement une
version unique des données à tous les clients à tout moment. Cependant, la sérialisabilité
nécessite une synchronisation coûteuse et entraîne un important surcoût en termes de perfor-
mance. De nombreux systèmes de stockage modernes sacrifient la cohérence forte au profit
de meilleures performances et garantissent des notions plus faibles d’isolation, telles que la
Transactional Causal Consistency [75, 81, 12], la Snapshot Isolation [27], la Read Commit-
ted [27], etc., afin d’améliorer les performances. Dans une enquête récente menée auprès
d’administrateurs de bases de données [91], 97% des participants ont indiqué que la plupart
ou la totalité des transactions dans leurs bases de données s’exécutaient sous des niveaux
d’isolation faibles.

Un niveau d’isolation plus faible permet davantage de comportements possibles que des
modèles de cohérence plus forts. Il revient donc aux développeurs de s’assurer que leur
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application peut tolérer cet ensemble élargi de comportements. Malheureusement, les niveaux
d’isolation faibles sont difficiles à comprendre et à raisonner [38, 9], et les bogues applicatifs
qui en résultent peuvent entraîner des pertes commerciales [104].

Plusieurs travaux ont étudié le problème de la compréhension des niveaux d’isolation.
La norme ANSI des niveaux d’isolation des transactions SQL a été introduite en 1992 [1].
Les niveaux ANSI décrivent de manière informelle les exigences minimales pour les niveaux
d’isolation, permettant certains comportements dans les niveaux d’isolation faibles qui étaient
interdits dans les niveaux plus forts. En 1995 [26], il a été critiqué que les niveaux ANSI définis
à l’aide d’énoncés en anglais n’étaient pas adéquats, car ils étaient parfois imprécis, parfois
ambiguës ; et ils ont proposé une nouvelle formalisation des niveaux d’isolation basée sur
des mécanismes de verrouillage. Hélas, dans 1999, [9] a montré que l’intuition derrière la
norme ANSI ne correspondait pas à la définition formelle proposée dans [26]. Au lieu de cela,
Adya [9] a proposé une formalisation alternative en étudiant les graphes de dépendance entre
transactions qui capturaient l’intuition de l’ANSI.

Dans 2017, le travail de Pavlo a révélé un manque de recherches sur l’impact du niveau
d’isolation sur la correction [91]. Pavlo a soutenu qu’en général, les chercheurs se concentrent
sur l’obtention de garanties fortes et bien comprises, telles que la Sérialisabilité, au lieu de
garanties plus faibles mais largement utilisées, telles que la Read Committed. Les protocoles
de contrôle de la concurrence utilisés dans les bases de données à grande échelle pour im-
plémenter des niveaux d’isolation basés sur la formalisation proposée dans [9] sont difficiles
à construire et à tester. Par exemple, le cadre de test boîte noire Jepsen [13] a trouvé un
nombre remarquablement élevé de problèmes subtils dans de nombreuses bases de données en
production. Plusieurs travaux ont abordé le problème de la vérification du code en produc-
tion en présence de niveaux d’isolation en fournissant des outils pour détecter ou prévenir les
bogues [29, 30, 69, 13].

Dans cette thèse, nous nous concentrons sur la vérification des programmes transactionnels
et des bases de données en présence de niveaux d’isolation. En particulier, nous étudions
comment effectuer une vérification par model checking des programmes transactionnels en
supposant que la base de données fournit correctement un certain niveau d’isolation, ainsi que
comment tester si la base de données fournit effectivement les niveaux d’isolation mentionnés
en analysant la correction des exécutions transactionnelles SQL.

Au-delà de la vérification, nous nous interrogeons également sur les niveaux d’isolation
pour lesquels il existe des implémentations permettant un haut débit, dans le but de concilier
recherche et développement. Inspirés par des implémentations modernes de bases de données
telles que CockroachDB [99] et TiDB [66], nous nous concentrons sur les implémentations
distribuées et répliquées. Comme mentionné précédemment, la Sérialisabilité n’est pas un
niveau d’isolation permettant un haut débit, car elle nécessite une synchronisation pour im-
plémenter la Sérialisabilité [59]. En général, synchroniser des clients concurrents dans un
scénario distribué empêche la disponibilité, que nous considérions des transactions ou non.
Nous explorons donc un scénario plus général, où les transactions ne jouent plus un rôle
prééminent et où les niveaux d’isolation sont englobés dans les modèles de cohérence. Dans
ce cadre, nous étudions quels objets soutiennent les implémentations disponibles de quels
modèles de cohérence.
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Pour résumer, dans cette thèse, nous abordons les questions suivantes :

1. Comment pouvons-nous effectuer un model checking efficacement pour des
applications reposant sur des bases de données sous des niveaux d’isolation
transactionnelle ?

2. Quelle est la complexité de la vérification de la cohérence d’une exécution SQL
par rapport à une configuration d’isolation ?

3. Quelle classe de modèles de cohérence soutient les implémentations disponibles
de quels objets en présence de partitions réseau ?

Vérification des Applications Basées sur des Bases de Données
Le model checking [48, 94] est une technique de vérification efficace pour vérifier si un modèle
à états finis satisfait une spécification donnée. Il explore l’espace d’états d’un programme
de manière systématique et offre une large couverture du comportement du programme.
Cependant, il se heurte au fameux problème d’explosion de l’état, c’est-à-dire que le nombre
d’exécutions croît de manière exponentielle en fonction du nombre de clients concurrents.

La réduction de l’ordre partiel (Partial Order Reduction, POR) [49, 60, 93, 102] est une
approche qui limite le nombre d’exécutions explorées sans sacrifier la couverture. La POR re-
pose sur une relation d’équivalence entre les exécutions où, par exemple, deux exécutions sont
équivalentes si l’une peut être obtenue à partir de l’autre en échangeant des étapes d’exécution
consécutives indépendantes (non conflictuelles). Les techniques de POR garantissent qu’au
moins une exécution de chaque classe d’équivalence est explorée. Les techniques de POR op-
timales explorent exactement une exécution de chaque classe d’équivalence. Au-delà de cette
notion classique d’optimalité, les techniques de POR peuvent viser l’optimalité en évitant
de visiter des états à partir desquels l’exploration est bloquée. La réduction dynamique de
l’ordre partiel (Dynamic Partial Order Reduction, DPOR) [54] a été introduite pour explorer
l’espace d’exécution (et suivre la relation d’équivalence entre les exécutions) à la volée, sans
se baser sur des analyses statiques a priori. Cela est généralement couplé avec le stateless
model checking (SMC) [61], qui explore les exécutions d’un programme sans stocker les états
visités, évitant ainsi une consommation excessive de mémoire.

Ces dernières années, certains travaux ont étudié la DPOR dans le cas de programmes à
mémoire partagée s’exécutant sous des modèles de mémoire faibles tels que TSO ou Release-
Acquire, par exemple [4, 5, 7, 72]. Bien que ces algorithmes soient valides et complets, ils
ont une complexité en espace exponentielle lorsqu’ils sont optimaux. Plus récemment, [73] a
défini un algorithme DPOR qui a une complexité en espace polynomial, tout en étant valide,
complet et optimal. Cet algorithme peut être appliqué à une gamme de modèles de mémoire
partagée.

Bien que tous les travaux mentionnés concernent des programmes à mémoire partagée,
nous ne connaissons aucune publication abordant le cas des programmes transactionnels de
base de données avant notre contribution.

Dans cette thèse, nous présentons le premier algorithme DPOR SMC pour une base de
données clé-valeur sous des niveaux d’isolation transactionnelle avec un ensemble statique de
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clés, qui est à la fois valide, c’est-à-dire qu’il énumère uniquement les exécutions réalisables
par rapport au niveau d’isolation, complet, c’est-à-dire qu’il génère un représentant de chaque
classe d’équivalence, optimal, c’est-à-dire qu’il génère exactement une exécution complète
de chaque classe d’équivalence, et utilise une mémoire polynomiale. Il généralise l’approche
adoptée par [72, 73], qui énumère les historiques des exécutions du programme. Nous avons
étudié les limitations théoriques de notre approche et évalué notre algorithme sur un certain
nombre d’applications complexes de bases de données tirées de la littérature.

Analyse de Complexité de la Vérification des Niveaux
d’Isolement SQL
La formalisation des niveaux d’isolation SQL présentée par Adya dans [9] repose sur l’absence
de dépendances cycliques dans des graphes de dépendances spécifiques. Dans [45], Cerone
et al. ont critiqué certaines des définitions proposées comme étant de bas niveau, et a présenté
une caractérisation alternative des niveaux d’isolation lorsque les transactions sont composées
de lectures et d’écritures sur un ensemble statique de clés. Dans [29], Biswas and Enea ont
proposé une définition alternative mais équivalente, adaptée à l’étude de la complexité de la
vérification si une exécution donnée adhère aux sémantiques du niveau d’isolation prescrit,
lorsque les transactions sont composées d’opérations de lecture et d’écriture sur une seule clé.

Dans cette thèse, nous considérons le problème de la vérification des implémentations des
niveaux d’isolation dans les bases de données dans un cadre plus général que [29], inspiré par
des scénarios qui se produisent dans les logiciels commerciaux [91]. Plus précisément, nous
étudions la vérification si une exécution SQL est cohérente par rapport aux niveaux d’isolation
prescrits, où les transactions sont formées de requêtes SQL et plusieurs niveaux d’isolation
sont utilisés simultanément, c’est-à-dire que chaque transaction se voit attribuer un niveau
d’isolation potentiellement différent. 32% des répondants à l’enquête de [91] ont signalé qu’ils
utilisent de telles configurations “hétérogènes”.

En tant que première contribution, nous introduisons une sémantique formelle axioma-
tique pour les exécutions avec des transactions SQL et une gamme de niveaux d’isolation, y
compris la Sérialisabilité, la Snapshot Isolation, la Prefix Consistency, la Transactional Causal
Consistency et la Read Committed. Traiter des requêtes SQL est plus complexe que les in-
structions classiques de lecture et d’écriture sur un ensemble statique de clés. En gros, les
transactions SQL sont composées de quatre opérations : INSERT, SELECT, UPDATE et DELETE.
Contrairement aux instructions de lecture et d’écriture statiques, INSERT et DELETE modifient
l’ensemble des emplacements à l’exécution, tandis que l’ensemble des emplacements retournés
ou modifiés par les requêtes SELECT, UPDATE et DELETE dépend de leurs valeurs (les valeurs
sont restreintes pour satisfaire les clauses WHERE). Notre cadre générique pour définir les
sémantiques des niveaux d’isolation adapte le travail de [29] et nous permet d’obtenir une
sémantique équivalente à celle introduite par Adya dans [9].

Nous fournissons les premiers résultats concernant la complexité de la vérification de la
correction des implémentations de niveaux d’isolation mixtes pour les transactions SQL. Nous
montrons que prendre en compte les sémantiques de type SQL est strictement plus complexe
que de simples lectures et écritures sur un ensemble statique de clés (NP-difficile dans la
plupart des cas). En particulier, nos résultats montrent que la prise en compte des requêtes
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de suppression joue un rôle clé dans la divergence par rapport à l’analyse de complexité de [29].
Nous présentons également un premier outil qui peut être utilisé pour tester leur correction, et
discutons de certaines conditions suffisantes sur les bancs d’essai pour lesquels les vérifications
de cohérence peuvent être effectuées en temps polynomial.

Implémentations Disponibles des Systèmes de Stockage Dis-
tribués
Les systèmes de stockage distribués permettent un accès fiable aux objets en les répliquant à
travers un réseau étendu. La réplication est essentielle pour tolérer les fautes dans le système
(par exemple, les pannes de machines, les partitions réseau) et pour réduire la latence. Dans
de tels systèmes, il est crucial de maintenir un compromis entre la disponibilité (garantir un
accès rapide aux données) et la préservation de la cohérence, même en présence de délais
de communication. Le théorème CAP [59, 36] montre qu’un magasin clé-valeur ne peut pas
fournir une Cohérence forte (atomicité) tout en maintenant la Disponibilité (Availability) et
en tolérant les Partitions du réseau simultanément. PACELC [3, 62] affine CAP en ajoutant
le cas d’un réseau connecté où une cohérence forte ne peut pas être atteinte avec une faible
latence.

De nombreux systèmes de stockage modernes sacrifient la cohérence forte au profit de la
disponibilité (ou d’une faible latence) et garantissent des notions plus faibles de cohérence.
Il existe une pléthore de modèles de cohérence faible [40] (ou niveaux d’isolation [10] dans le
contexte des transactions) qui correspondent à différents compromis en matière de disponi-
bilité. D’autres systèmes de stockage modernes assouplissent la sémantique des objets qu’ils
prennent en charge, par exemple les registres à valeurs multiples, où une opération get renvoie
arbitrairement une valeur précédemment stockée.

Les résultats précédents n’apportaient que des réponses partielles à cette question. Le
théorème CAP mentionné ci-dessus ne fournit qu’un résultat négatif, à savoir qu’un magasin
clé-valeur atomique (linéarisable) n’appartient pas à cette classe. Attiya et al. [19] identifient
un modèle de cohérence, appelé Observable Causal Consistency (OCC), qui n’est pas inclus
dans cette classe ; mais seulement pour certains objets particuliers, les registres à valeurs
multiples. Nous remarquons que la cohérence causale, qui est strictement plus faible que les
deux, appartient à la classe.

Dans cette thèse, nous apportons une réponse précise à la question soulevée ci-dessus.
Pour ce faire, nous nous appuyons sur un cadre très expressif pour définir des modèles de
cohérence et des sémantiques d’objets, fondé sur des travaux antérieurs [40]. En utilisant
ce cadre, nous donnons une caractérisation tight des modèles et des objets qui peuvent être
exprimés dans ce cadre et qui admettent des implémentations disponibles.

Notre résultat principal affirme, de manière approximative, qu’un système de stockage
dispose d’une implémentation disponible si et seulement s’il met en œuvre un modèle de
cohérence sans arbitrage, c’est-à-dire un modèle de cohérence dont les formules de visibilité
excluent toute utilisation significative de tout ordre total d’arbitrage, c’est-à-dire de tout or-
dre total pouvant être utilisé comme “tie-breaker” pour fixer un ordre entre des invocations
concurrentes.
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1 Introduction

Data storage is no longer about writing data to a single disk with a single point of access.
Modern applications require not just data reliability, but also high-throughput concurrent
accesses. For example, applications concerning supply chains, banking, etc. use distributed
relational databases for storing and processing data, whereas applications such as social net-
working software and e-commerce platforms use cloud-based storage systems (such as Azure
Cosmos DB [92], Amazon DynamoDB [50], Facebook TAO [37]. . . ).

Providing high-throughput processing, unfortunately, comes at an unavoidable cost of
weakening the consistency guarantees offered to users. To illustrate this phenomenon, let
us consider a banking application where two concurrent users transfer money to the same
account; reading the account balance and incrementing it accordingly. For ensuring both
transfer take place and the total balance is correctly updated, one of the senders must wait
for the other. Conversely, ensuring weak consistency guarantees can improve throughput, at
the cost of allowing that concurrently-connected clients end up observing different versions of
the same data. Following the example, if only weak guarantees are enforced, both clients may
observe the initial state, prior execution, and update the account balance based only on their
observed state without noticing the other concurrent transfer. The result of such execution
is that the account balance may only reflect one of the two transfers, with users potentially
losing money!

In the particular case of databases, these “anomalies” can be prevented by using a strong
isolation level such as Serializability [90], which essentially offers a single version of the data
to all clients at any point in time. However, serializability requires expensive synchronization
and incurs a high performance cost. Many modern storage systems sacrifice strong consis-
tency for better performance and ensure weaker notions of isolation, such as Transactional
Causal Consistency [75, 81, 12], Snapshot Isolation [27], Read Committed [27], etc. for better
performance. In a recent survey of database administrators [91], 97% of the participants re-
sponded that most or all of the transactions in their databases execute under weak isolation
levels.

A weaker isolation level allows more possible behaviors than stronger consistency models.
It is up to the developers to ensure that their application can tolerate this larger set of
behaviors. Unfortunately, weak isolation levels are hard to understand or reason about [38, 9]
and resulting application bugs can cause loss of business [104].

Multiple works investigated the problem of understanding isolation levels. The ANSI
standard of SQL transaction isolation levels was introduced in 1992 [1]. The ANSI levels
informally described minimal requirements for isolation levels, allowing some behaviors in
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Chapter 1. Introduction

weak isolation levels that were forbidden on stronger ones. In 1995 [26] criticized that the
ANSI levels defined using English statements were not adequate, as they were sometimes
imprecise, sometimes ambiguous; and they proposed a new formalization of isolation levels
based on locking mechanisms. Alas, in 1999, [9] showed that the intuition behind the ANSI
standard did not correspond to the formal definition proposed in [26]. Instead, Adya [9]
proposed an alternative formalization studying dependency graphs between transactions that
captured the ANSI intuition.

In 2017, the work by Pavlo exposed a lack of research on the impact of the isolation level
on correctness [91]. Pavlo argued that in general, researchers focus on obtaining strong, well-
understood guarantees, such as Serializability, instead of weaker but widely-employed ones
such as Read Committed. The concurrency control protocols used in large-scale databases
to implement isolation levels based on the formalization proposed in [9] are difficult to build
and test. For instance, the black-box testing framework Jepsen [13] found a remarkably large
number of subtle problems in many production databases. Multiple works approached the
problem of verifying production code in the presence of isolation levels by providing tools for
finding or preventing bugs [29, 30, 69, 13].

In this thesis, we focus on verification of both transactional programs and databases in the
presence of isolation levels. In particular, we study how to model-check transactional programs
assuming that the database correctly provides some isolation level, as well as how to test if
the database indeed provides the aforementioned isolation levels analyzing the correctness of
transactional SQL executions.

Beyond verification, we also question for which isolation levels there exist implementations
that allow high-throughput; aiming to reconcile both research and development. Inspired by
modern database implementations such as CockroachDB [99] and TiDB [66], we focus on
distributed and replicated implementations. As mentioned before, Serializability is not an
isolation level that allow high-throughput, as it requires synchronization for implementing
Serializability [59]. In general, synchronizing concurrent clients on a distributed scenario
disallows availability, whether we consider transactions or not. We thus explore a more general
scenario, where transactions do not longer play a preeminent role anymore and isolation levels
are subsumed into consistency models. There, we study which objects support available
implementations of which consistency models.

To summarize, in this thesis we address the following questions:

1. How can we efficiently model check database-backed applications under trans-
action isolation levels?

2. What is the complexity of checking if a SQL database execution is consistent
with respect to an isolation configuration?

3. What class of consistency models support available implementations of which
objects in the presence of network partitions?
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Model Checking Database-Backed Applications
Model checking [48, 94] is an effective verification technique for checking whether a finite-
state model satisfies a given specification. It explores the state space of a given program in a
systematic manner and it provides high coverage of program behavior. However, it faces the
infamous state explosion problem, i.e., the number of executions grows exponentially in the
number of concurrent clients.

Partial order reduction (POR) [49, 60, 93, 102] is an approach that limits the number
of explored executions without sacrificing coverage. POR relies on an equivalence relation
between executions where e.g., two executions are equivalent if one can be obtained from the
other by swapping consecutive independent (non-conflicting) execution steps. POR techniques
guarantee that at least one execution from each equivalence class is explored. Optimal POR
techniques explore exactly one execution from each equivalence class. Beyond this classic
notion of optimality, POR techniques may aim for optimality by avoiding visiting states from
which the exploration is blocked. Dynamic partial order reduction (DPOR) [54] has been
introduced to explore the execution space (and tracking the equivalence relation between
executions) on-the-fly without relying on a-priori static analyses. This is typically coupled
with stateless model checking (SMC) [61] which explores executions of a program without
storing visited states, thereby, avoiding excessive memory consumption.

In the last few years, some works have studied DPOR in the case of shared memory
programs running under weak memory models such as TSO or Release-Acquire, e.g. [4, 5, 7,
72]. While these algorithms are sound and complete, they have exponential space complexity
when they are optimal. More recently, [73] defined a DPOR algorithm that has a polynomial
space complexity, in addition of being sound, complete and optimal. This algorithm can be
applied for a range of shared memory models.

While all the aforementioned works concern shared memory programs, we are not aware
of any published work addressing the case of database transactional programs prior our con-
tribution.

In this thesis, we present the first DPOR SMC algorithm for a key-value database under
transaction isolation levels with a static set of keys that is at the same time sound, i.e., it
enumerates only feasible executions with respect the isolation level, complete, i.e., it outputs
a representative of each equivalence class, optimal, i.e., it outputs exactly one complete ex-
ecution from each equivalence classm, and employs polynomial memory. It generalizes the
approach adopted by [72, 73], which enumerates histories of program executions. We studied
the theoretical limitations of our approach, and we evaluated our algorithm on a number of
challenging database-backed applications drawn from the literature.
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Complexity Analysis of Testing SQL Isolation Levels
The formalization of SQL isolation levels presented by Adya in [9] rely on the absence cyclic
dependencies on specific dependency graphs. In [45], Cerone et al. criticized that some of the
proposed definitions are low-level, and presented an alternative characterization of isolation
levels when transactions are formed of reads and writes on a static set of keys. In [29],
Biswas and Enea proposed an alternative yet equivalent definition tailored for studying the
complexity of checking whether a given execution adheres to the prescribed isolation level
semantics when transactions are composed of read and write operations on a single key.

In this thesis, we consider the problem of testing the isolation level implementations in
databases in a more general setting than [29], inspired by scenarios that arise in commercial
software [91]. More precisely, we study checking if a SQL execution is consistent with respect
to the prescribed isolation levels, where transactions are formed of SQL queries and multiple
isolation levels are used at the same time, i.e., each transaction is assigned a possibly different
isolation level. 32% of the respondents of the survey in [91] signaled that they use such
“heterogeneous” configurations.

As a first contribution, we introduce an axiomatic formal semantics for executions with
SQL transactions and a range of isolation levels, including Serializability, Snapshot Isolation,
Prefix Consistency, Transactional Causal Consistency and Read Committed. Dealing with
SQL queries is more challenging than static read and write instructions. Roughly, SQL
transactions are composed of four operations: INSERT, SELECT, UPDATE and DELETE. Unlike
static read and write instructions, INSERT and DELETE change the set of locations at runtime,
while the set of locations returned or modified by SELECT, UPDATE and DELETE queries depends
on their values (the values are restricted to satisfy WHERE clauses). Our generic framework for
defining isolation level semantics adapts the work of [29] and allow us to obtain an equivalent
semantics to the aforementioned semantics introduced by Adya in [9].

We provide the first results concerning the complexity of checking the correctness of mixed
isolation level implementations for SQL transactions. We show that considering SQL-like
semantics is strictly more complex that just reads and writes on a static set of keys (NP-hard
in most cases). In particular, our results show that considering delete queries plays a key role
on the divergence with respect to the complexity analysis from [29]. We also present a first
tool that can be used in testing their correctness, and discuss some sufficient conditions on
benchmarks for which consistency checks can be done in polynomial time.
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Available Implementations of Distributed Storage Systems
Distributed storage systems enable reliable access to objects by replicating them across a wide-
area network. Replication is essential for tolerating faults in the system (e.g., machines that
crash, network partitions) and for decreasing latency. In such systems, it is crucial to maintain
a trade-off between availability (ensuring prompt access to data) and preserving consistency,
even in the presence of communication delays. The CAP theorem [59, 36] shows that a key-
value store cannot provide strong Consistency (atomicity) while maintaining Availability and
tolerating network Partitions at the same time. PACELC [3, 62] refines CAP by adding the
case of a connected network where strong consistency cannot be achieved with low latency.

Many modern storage systems sacrifice strong consistency for availability (or low latency)
and ensure weaker notions of consistency. There is plethora of weak consistency models [40]
(or isolation levels [10] in the context of transactions) that correspond to different trade-offs
with respect to availability. Other modern storage systems relax the semantics of the objects
they support, e.g., multi-value registers, where a get arbitrarily returns a previously stored
value.

Given that the guarantees of a storage system are captured through the subtle combination
of its consistency model and its object semantics, a natural question to consider is which class
of consistency models support available implementations of which objects.

Previous results provided only partial answers to this question. The aforementioned CAP
theorem only shows a negative result that an Atomic (Linearizable) Key-Value Store is not
included in this class. Attiya et al. [19] identify a consistency model, called Observable Causal
Consistency (OCC), that is not included in this class; but only for particular objects, Multi-
Value Registers. We remark that Causal Consistency, which is strictly weaker than both of
them, is in the class.

In this thesis we give a precise answer for the question raised above. To do so, we rely on
a very expressive framework for defining consistency models and object semantics that builds
on previous work [40]. Using this framework, we give a tight characterization of models and
objects that can be expressed within this framework and that support available implementa-
tions.

Our main result states roughly, that a storage system has an available implementation if
and only it implements an arbitration-free consistency model, i.e. a consistency models whose
visibility formulas exclude any meaningful use of any total arbitration order, i.e. any total
order that can be used as a "tie-breaker" to fix an order between concurrent invocations.
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Structure
The rest of the thesis is organized as follows:

• Chapter 2 presents the notions of histories and isolation levels, central to the rest of the
chapters.

• Chapter 3 introduces SMC algorithms and DPOR techniques for checking transaction
isolation levels.

• Chapter 4 describes an axiomatic semantics of SQL transaction isolation and studies
the complexity of checking if program executions are consistent with respect to them.

• Chapter 5 introduces the generic framework for describing consistency models and ob-
jects, and proves the AFC theorem.

• Chapter 6 summarizes our contributions and list open research topics.

Publications
This PhD thesis is based on the following works, where I am a primary author and a major
contributor to their methodology, proofs, implementations and writing:

• Chapter 3: Dynamic Partial Order Reduction for Checking Correctness against Trans-
action Isolation Levels [32],
Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo
PLDI 2023

• Chapter 4: On the Complexity of Checking Mixed Isolation Levels for SQL Transactions
[34],
Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo
CAV 2025

• Chapter 5: Arbitration-Free Consistency is Available (and Vice Versa) [20],
Hagit Attiya, Constantin Enea, Enrique Román-Calvo
POPL 2026
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2 Preliminaries

In this chapter we present an axiomatic formalization of databases that builds on the work of
Biswas and Enea [29]. The extension to arbitrary storage is described in Chapter 5.

A database is formed of a set of infinite objects Objs, ranged over using x, y, z In the
context of a relational database, objects correspond to fields/rows of a table while in the
context of a key-value store, they correspond to keys. Client programs interact with the
database via a non-empty set of operations (also called instructions) InstrDB. An operation
may read or write one or multiple objects; multi-object operations can be used to model SQL
operations for example. Operations may write or return values in a set Vals. We assume that
Vals contains a special value ⊥, used for operations that do not return any value.

2.1 Transactions
We consider clients programs accessing the database from a number of parallel sessions, each
session being a sequence of transactions defined by the following grammar:

Transaction ::= begin;Body; commit

Body ::= Instr | Instr;Body

Instr ::= InstrDB | a := LExpr | if(LCond){Instr}

Each transaction is delimited by begin and commit instructions. The body contains
statements for accessing the database and standard assignments and conditionals for local
computation. Local computation uses local variables from a set LVars. We use a, b, . . . to
denote local variables. Expressions and Boolean conditions over local variables are denoted
with LExpr and LCond, respectively. We leave unspecified the set of database access instruc-
tions (InstrDB) as we consider in each chapter different ones, such as read-write operations (as
in [29, 45]) or SQL-operations (as in [9]). We assume that InstrDB contains the instruction
abort, allowing the client to abort the transaction and roll back all the modifications of the
transaction.

The invocation of a database operation is represented using an event. We assume events
are tuples ⟨id, op⟩, where id is an event identifier and op is a type of operation. For each event
e, we denote by id(e) and op(e) to the type identifier, event identifier and type of an event
respectively. Two distinct invocations of the same operation are considered different events,
we represent this by associating each event to a unique event identifier. The set of events is
denoted by Events. We assume that Events includes a special type of initial events that affect
every object, representing an initial state of the database.
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We assume that there is a type per database access statement, as well as two special types,
begin and commit, indicating the start and the end of the transaction. We say that an event
is of type end if it is either a commit or an abort event.

A transaction log (t, E, pot) is an identifier t, a finite set of events E along with a strict
total order pot on E, called program order (representing the order between instructions in the
body of a transaction). The set E of events in a transaction log t is denoted by events(t). For
simplicity, we may use the term transaction instead of transaction log. Transactions always
contain a single begin event; which is pot-minimal w.r.t. pot.

begine1

read(x)e2

write(y, 1)e3

write(z, 2)e4

read(z)e5

write(z, 3)e6

commite7

po

po

po

po

po

po

Figure 2.1: An example of a transaction using read and write semantics. Arrows represent po
dependencies. We omit transitive edges and event identifiers for readability.

Figure 2.1 shows one example of transaction where the set of operations are reads and
writes of a single object. A transaction may contain multiple reads and writes; and write
multiple objects. In the following, we omit begin and commit events, as well as the program
order relation in the transaction from our figures for readability.

A transaction with neither a commit nor an abort event is called pending. Otherwise,
it is called complete. A complete transaction log with a commit event is called committed
and aborted otherwise. If a commit or an abort event occurs, then it is maximal in pot;
commit and abort cannot occur in the same log. Note that a transaction is aborted because
it executed an abort instruction. We do not consider transactions aborted by the database
because their effect should not be visible to other transactions and the abort is not under the
control of the program.

The event read(x) present in the transaction described in Figure 2.1 access the database
while the event write(y, 1) modifies it. In general, events associated to a operations reading
the database are called read events. Similarly, events associated to operations writing the
database are called write events. Events can be both read and write events, such as those
whose operations are atomic read-writes, SQL updates, etc... Also, events such as begin or
commit events are neither read nor write events.

8
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For a given transaction t, we denote by reads(t) the set of read events contained in t. Also,
if t does not contain an abort event, the set of write events in t is denoted by writes(t). If
t contains an abort event, then we define writes(t) to be empty. This is because the effect
of aborted transactions (its set of writes) should not be visible to other transactions. The
extension to sets of transaction logs is defined as usual.

2.2 Histories
The interaction between a (client) program and a database is modeled as a history which
records the operations executed on each session and data-flow dependencies that explain the
values returned by operations on the database.

A history contains a set of transaction logs (with distinct identifiers) T ordered by a
(partial) session order so that represents the order between transactions in the same session.
It also includes a write-read relation wr (also known as read-from) representing data-flow
dependencies between updates and reads; implicitly defining the values observed (returned) by
the reads. For every key x ∈ Keys we consider a write-read relation wrx ⊆ writes(T )×reads(T ).
The union of wrx for every x ∈ Keys is denoted by wr. We use h, h1, h2, . . . to range over
histories.

We assume that wr−1
x is a (partial) function and thus, we use wr−1

x (r) to denote the event
w such that (w, r) ∈ wrx; if it is defined. Assuming wr−1

x to be a function ensures that each
read event r reads an object x from only one write event. Also, assuming that wr−1

x is partial
allows us defining histories where events do not read all possible objects, for example, if they
are not present in the database because a previous event deleted them. We use wr−1

x (r) ↓ if
there exists an event w such that (w, e) ∈ wrx, and wr−1

x (r) ↑, otherwise.
We say an event r reads an object x in a history if wr−1

x (r) ↓. In our model, we assume
that if a transaction modifies an object x and then it reads the same object, then it must
always return the value written in the transaction. Whenever a read r reads x from an event
from the same transaction, we say that r reads x locally x, and we denote by localwrx (r) to the
write event w = wr−1

x (r) that r reads x from. Otherwise, if r reads x but not locally, we say
that r reads x externally, and we denote by externwrx (r) to the write event w = wr−1

x (r) that r
reads x from. We use localwrx (r) ↓ (resp. externwrx (r) ↓) if r reads x locally (resp. externally),
and localwrx (r) ↑ (resp. externwrx (r) ↑) otherwise.

We represent the value written by a write event w on an object x via the value function
valuewr(w, x), a computable function that returns the value written by w (or ⊥ if w does not
write x). For example, if operations are reads and writes on a single object, as in Figure 2.1,
the value written by an event is defined as follows:

valuewr(w, x) =

{
v if w = write(x, v)
⊥ otherwise

In general, we assume that valuewr(w, x) is a computable function that returns the value
written by w (or ⊥ if w does not write x). The value written by an event w on an object x
may depend on the value of x read by w. This is the case of atomic read-writes (also called
conditional writes). We say that an event w writes x in h, denoted by w writes x, whenever
valuewr(w, x) ̸= ⊥ and the transaction of w is not aborted.

9
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We extend the relations wr and wrx to pairs of transactions by (t1, t2) ∈ wr, resp., (t1, t2) ∈
wrx, iff there exist events w in t1 and r in t2, t1 ̸= t2 s.t. (w, r) ∈ wr, resp., (w, r) ∈ wrx.
Analogously, we extend wr and wrx to tuples formed of a transaction (containing a write) and
a read event. We say that the transaction t1 is read by the transaction t2 when (t1, t2) ∈ wr.
We assume that if a transaction contains multiple writes to the same object, then only the last
one (w.r.t. po) can be read by other transactions; so the extension of wr to tuples formed of
a transaction and a read event defines unambiguously a write-read relation of pairs of events.
The extension of externwrx and externwr is done similarly. We extend the function value to
transactions: valuewr(t, x) equals valuewr(w, x), where w is the maximal event in pot that
writes x.

Histories contain an initial transaction, init, that precedes every other transaction in
T w.r.t so. We extend so to pairs of events by (e1, e2) ∈ so if (tr(e1), tr(e2)) ∈ so. Also,
po =

⋃
t∈T pot. The set of events present in h is denoted by events(h).

{x : 0, y : 0}
init

write(y,−1)
write(x, 1)

t1

read(x)

t2

read(y)
write(x, 2)

t3

wrx

wryso

so

so

Figure 2.2: An example of a history where transactions use read and write operations. Arrows
represent so and wr relations. The initial transaction init defines the initial state where both
x and y are 0. Transaction t1 writes on x and y value 1 and −1 respectively while transaction
t3 writes on x value 2 and 2 respectively. Transaction t2 is executed on the same session as
t1, but reads x from transaction t3; while transaction t3 reads y from the initial transaction

Figure 2.2 presents a history in the context of [29]. Transactions omit begin and commit

events for legibility.

Definition 2.2.1. A history (T, so,wr) is a set of transactions T along with a strict partial
session order so, and a write-read relation wrx ⊆ writes(T )× reads(T ) for every x ∈ Objs s.t.

• T contains a single initial event init which is a so-predecessor of every other transac-
tion,

• the inverse of wrx is a function,

• if r reads x from w, then w writes x: if wr−1
x (r) ↓, valuewr(wr−1

x (r), x) ̸= ⊥,

• if r reads x externally, then r cannot read x locally: if externwrx (r) ↓, then localwrx (r) ↑,

• if r reads x locally, then r reads x from the latest event preceding r in tr(r) that writes
x: if localwrx (r) ↓, then W r

x is not empty and localwrx (r) = maxpoW
r
x , and
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• so ∪ wr is acyclic (here we use the extension of wr to pairs of transactions).

where W r
x = {w ∈ tr(r) | (w, r) ∈ po ∧ valuewr(w, x) ̸= ⊥}.

2.3 Executions
An execution on a database is represented abstractly using a history with a set of transactions
T along with a well-founded total order co ⊆ T × T called commit order. Intuitively, the
commit order represents the order in which transactions are committed in the database.

Definition 2.3.1. An execution ξ = (h, co) is a history h = (T, so,wr) along with a commit
order co ⊆ T × T , s.t. transactions in the same session or that are read are necessarily
committed in the same order: so ∪ wr ⊆ co. ξ is called an execution of h.

For a transaction t, we use t ∈ ξ to denote the fact that t ∈ T . Analogously, for an event
e, we use e ∈ ξ to denote that e ∈ t and t ∈ ξ. The extension of a commit order to pairs of
events or pairs of transactions and events is done in the obvious way.

{x : 0, y : 0}
init

write(y,−1)
write(x, 1)

t1

read(x)

t2

read(y)
write(x, 2)

t3
co

co

co

(a) An execution execution of the history in Fig-
ure 2.2.

{x : 0, y : 0}
init

write(y,−1)
write(x, 1)

t1

read(x)

t2

read(y)
write(x, 2)

t3

co

co

co

(b) Another execution execution of the history in
Figure 2.2.

Figure 2.3: Two different executions of the history from Figure 2.2. Arrows represent co
relations. We omit transitive edges and the relations so and wr from the corresponding
histories for readability.

Figure 2.3 shows the two possible executions of the history h = (T, so,wr) depicted in
Figure 2.2. As in any execution ξ = (h, co) of h, so ∪ wr ⊆ co, init must precede every
transaction w.r.t. co, and transaction t2 must succeed every transaction w.r.t. co.

2.4 Isolation Levels
Isolation levels enforce restrictions on the commit order in an execution that depend on the
session order so and the write-read relation wr. An isolation level ι is a set of constraints
called axioms. Intuitively, an axiom states that a read event r reads key x from transaction t1
if t1 is the latest transaction that writes x which is “visible” to r – latest refers to the commit
order co. Formally, an axiom a is a predicate of the following form:
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a(r) := ∀x, t1, t2.t1 ̸= t2 ∧ (t1, r) ∈ wrx ∧ t2 writes x ∧ visa(t2, r, x) =⇒ (t2, t1) ∈ co (2.1)

where r is a read event from t.
The visibility relation of a visa is described by a formula of the form:

visa(τ0, τk+1, x) := ∃τ1, . . . , τk.
k+1∧
i=1

(τi−1, τi) ∈ Reli ∧ wrConsa(τ0, . . . , τk+1) (2.2)

with each Reli is defined by the grammar:

Rel ::= po | so |wr | co |Rel ∪ Rel |Rel;Rel |Rel? |Rel+ |Rel∗ (2.3)

This formula states that τ0 (which is t2 in Eq.2.1) is connected to τk+1 (which is r in
Eq.2.1) by a path of dependencies that go through some intermediate transactions or events
τ1, . . . , τk. Every relation used in such a path is described based on po, so,wr and co using
union ∪, composition of relations ;, and transitive closure +. Rel? is syntactic sugar for id∪Rel,
and Rel∗ for id ∪ Rel+; where id is the identity relation. Finally, extra requirements on the
intermediate transactions s.t. writing a different key y ̸= x are encapsulated in the predicate
WrConsa(τ0, . . . , τk, x).

Each axiom a uses a specific visibility relation denoted by visa. vis(ι) denotes the set of
visibility relations used in axioms defining an isolation level ι.

Figure 2.4 shows five axioms which correspond to their homonymous isolation levels [29]:
Read Committed (RC), Read Atomic (RA), Transactional Causal Consistency (TCC), Prefix
Consistency (PC) and Serializability (SER).

SER states that t2 is visible to r if t2 commits before r. Under PC, r observes a prefix
of the transactions that precede tr(r) w.r.t. co. Such a prefix is indicated by the maximal
transaction w.r.t. co t4 that either precedes tr(r) w.r.t. so or that tr(r) reads from. TCC states
that t2 is visible to r if t2 is in the causal past of t3. RA states that t2 is visible to r if either t2
precedes tr(r) in its session or there exists an event r′ in tr(r) that reads some object y from
t2. RC slightly varies from the requirements from RA as the event r′ in tr(r) that reads from
t2 must precede r in the transaction.

In addition, the isolation level Snapshot Isolation (SI) is defined using two axioms: Prefix
and Conflict. SI states that t2 observes a prefix of the committed transactions and such prefix
is conflict-maximal (i.e. if tr(r) writes some object y, the prefix it observes must contain all
transactions writing y that precedes it w.r.t. co).

Note that SER is stronger than RC: every transaction visible to a read r according to RC is
also visible to r according to SER. This means SER imposes more constraints for transaction
t1 to be read by r than RC.

In general, we say that an isolation level ι1 is stronger than (respectively weaker than)
another isolation level ι2, denoted by ι2 ≼ ι1 (respectively ι2 ≽ ι1) if the number of constraints
imposed for a transaction t1 to be read by r imposed by ι1 is larger than those imposed by
ι2. We observe that RC ≼ RA ≼ TCC ≼ PC ≼ SI ≼ SER.
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t1

t2

writes x

r

r′

wrx

so ∪ wr

po∗
co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, r) ∈ wrx ∧
t2 writes x ∧
(t2, r) ∈ (so ∪ wr); po∗

=⇒ (t2, t1) ∈ co

(a) Read Committed

t1 t3

t2

writes x

wrx

so ∪ wr

co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, t3) ∈ wrx ∧
t2 writes x ∧
(t2, t3) ∈ so ∪ wr

=⇒ (t2, t1) ∈ co

(b) Read Atomic

t1 t3

t2

writes x

wrx

(so ∪ wr)+

co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, t3) ∈ wrx ∧
t2 writes x ∧
(t2, t3) ∈ (so ∪ wr)+

=⇒ (t2, t1) ∈ co

(c) Transactional Causal Cons.

t1 t3

t2

writes x

t4

wrx

co∗

(so ∪ wr)co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, t3) ∈ wrx∧
t2 writes x ∧
(t2, t3) ∈ co∗; (so ∪ wr)

=⇒ (t2, t1) ∈ co

(d) Prefix

t1 t3 writes y

t2

writes x

t4

writes y

wrx

co∗

co
co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, t3) ∈ wrx ∧
t2 writes x ∧ t4 writes y ∧
t3 writes y ∧
(t2, t4) ∈ co∗ ∧ (t4, t3) ∈ co

=⇒ (t2, t1) ∈ co

(e) Conflict

t1 t3

t2

writes x

wrx

co

co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, t3) ∈ wrx ∧
t2 writes x ∧
(t2, t3) ∈ co

=⇒ (t2, t1) ∈ co

(f) Serializability

Figure 2.4: Some well-known axioms defining isolations levels.

Given a history h and an isolation level ι, h is called consistent w.r.t. ι when there exists
an execution ξ of h such that for all transactions t in ξ, the axioms in ι are satisfied in ξ (the
interpretation of an axiom over an execution is defined as expected).

For example, let h be the history in Figure 2.2. The history h is not consistent w.r.t. SER:
as discussed in Section 2.3, there are only two possible executions of h, ξ1 (Figure 2.3a) and ξ2
(Figure 2.3b). The execution ξ1 is not consistent w.r.t. SER as t2 reads x from t3 but t1 writes
x and it is committed between t3 and t1. Also, the execution ξ2 is not consistent w.r.t. SER
as t3 reads y from init but t1 writes y and it is committed between init and t3. The history
h is consistent w.r.t. TCC as the execution ξ2 does not violate the Transactional Causal Cons.
axiom.

Definition 2.4.1. A history h = (T, so,wr) is consistent with respect to the isolation level ι
iff there is an execution ξ of h s.t.

∧
t∈T,r∈reads(t),a∈ι a(r) holds in ξ; ξ is called a consistent

execution of h.
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3 Dynamic Partial Order
Reduction for Checking
Correctness against Transaction
Isolation Levels

3.1 Introduction
In this chapter, we address the problem of model checking database-backed applications
against a given isolation level. In particular, we focus on Dynamic Partial Order Reduc-
tion (DPOR) Stateless Model Checking (SMC) algorithms for databases with a static set of
keys. We generalize the approach introduced by [73]. However, this generalization to the
transactional case, covering the most relevant isolation levels, is not a straightforward adap-
tation of [73]. Ensuring optimality while preserving the other properties, e.g., completeness
and polynomial memory complexity, is very challenging. Next, we explain the main steps and
features of our work.

DPOR algorithms are parametrized by an equivalence relation on executions, most often,
Mazurkiewicz equivalence [85]. In this work, we consider a weaker equivalence relation, also
known as read-from equivalence [46, 7, 8, 72, 71, 73], which considers that two executions are
equivalent when their histories are precisely the same (they contain the same set of events,
and the relations po, so, and wr are the same). In general, reads-from equivalence is coarser
than Mazurkiewicz equivalence, and its equivalence classes can be exponentially-smaller than
Mazurkiewicz traces in certain cases [46].

Our SMC algorithms enumerate executions of a given program under a given isolation
level ι. They are sound, complete and optimal. For isolation levels weaker than and including
Transactional Causal Consistency, they satisfy a notion of strong optimality which says that
additionally, the enumeration avoids states from which the execution is “blocked”, i.e., it
cannot be extended to a complete execution of the program. For Snapshot Isolation and
Serializability, we show that there exists no algorithm in the same class (to be discussed
below) that can ensure such a strong notion of optimality. All the algorithms that we propose
are polynomial space, as opposed to many DPOR algorithms introduced in the literature.

As a starting point, we define a generic class of SMC algorithms, called swapping based,
generalizing the approach adopted by [72, 73], which enumerate histories of program execu-
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tions. These algorithms focus on the interaction with the database assuming that the other
steps in a transaction concern local variables visible only within the scope of the enclosing
session. Executions are extended according to a generic scheduler function Next and every
read event produces several exploration branches, one for every write executed in the past that
it can read from. Events in an execution can be swapped to produce new exploration “roots”
that lead to different histories. Swapping events is required for completeness, to enumerate
histories where a read r reads from a write w that is scheduled by Next after r. To ensure
soundness, we restrict the definition of swapping so that it produces a history that is feasible
by construction (extending an execution which is possibly infeasible may violate soundness).
Such an algorithm is optimal w.r.t. the read-from equivalence when it enumerates each history
exactly once.

We define a concrete algorithm in this class that in particular, satisfies the stronger notion
of optimality mentioned above for every isolation level ι which is prefix-closed and causally-
extensible, e.g., Read Committed and Transactional Causal Consistency. Prefix-closure means
that every prefix of a history that satisfies ι, i.e., a subset of transactions and all their prede-
cessors in the causal relation, i.e., (so∪wr)+, is also consistent w.r.t. ι, and causal extensibility
means that any pending transaction in a history that satisfies ι can be extended with one
more event to still satisfy ι, and if this is a read event, then, it can read-from a transaction
that precedes it in the causal relation. To ensure strong optimality, this algorithm uses a
carefully chosen condition for restricting the application of event swaps, which makes the
proof of completeness in particular, quite non-trivial.

We show that isolation levels such as Snapshot Isolation and Serializability are not
causally-extensible and that there exists no swapping based SMC algorithm which is sound,
complete, and strongly optimal at the same time (independent of memory consumption
bounds). This impossibility proof uses a program to show that any Next scheduler and
any restriction on swaps would violate either completeness or strong optimality. However, we
define an extension of the previous algorithm which satisfies the weaker notion of optimality,
while preserving soundness, completeness, and polynomial space complexity. This algorithm
will simply enumerate executions according to a weaker prefix-closed and causally-extensible
isolation level, and filter executions according to the stronger isolation levels Snapshot Isola-
tion and Serializability at the end, before outputting.

We implemented these algorithms in the Java Pathfinder (JPF) model checker [103], and
evaluated them on a number of challenging database-backed applications drawn from the
literature of distributed systems and databases.

The rest of the chapter is structured as follows:

§ 3.2 recalls the specificities of the formalization of Biswas and Enea [29] with respect to
generic framework presented in Chapter 2.

§ 3.3 identifies a class of isolation levels called prefix-closed and causally-extensible that admit
efficient SMC.

§ 3.4 defines a generic class of swapping based SMC algorithms based on DPOR which are
parametrized by a given isolation level.
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§ 3.5 defines a swapping based SMC algorithm which is sound, complete, strongly-optimal,
and polynomial space, for any isolation level that is prefix-closed and causally-extensible.

§ 3.6 shows that there exists no swapping based algorithm for Snapshot Isolation and Serial-
izability, which is sound, complete, and strongly-optimal at the same time, and proposes
a swapping based algorithm which satisfies “plain” optimality.

§ 3.7 reports on an implementation and evaluation of these algorithms.

§ 3.8 discusses related work.

§ 3.9 concludes with some remarks about our contribution.

3.2 Transactional Programs with Read-Write Operations
In this section we describe the concrete program syntax employed during the rest of the
chapter.

3.2.1 Program Syntax

a ∈ LVars x ∈ Keys v ∈ Vals

Trans ::= begin;Body; commit

Body ::= Instr | Instr;Body

Instr ::= InstrDB | a := LExpr | if(LCond){Instr}
InstrDB ::= a := read(x) | write(x, v) | abort

Figure 3.1: Program syntax of a key-value store using read-write semantics.

Figure 3.1 lists the definition of a simple programming language that we use to represent
applications running on top of a key-value database. We use Keys as an alias of Objs to
indicate that our objects represent keys on the database; and we also call keys to objects.

Our results assume bounded programs, as usual in SMC algorithms, and therefore, we
omit other constructs like while loops. SQL statements (SELECT, JOIN, UPDATE) manipulating
relational tables can be compiled to reads or writes of keys representing rows in a table (see
for instance, [95, 30]).

The instructions accessing the database correspond to reading the value of a key and
storing it into a local variable a (a := read(x)), writing the value of a local variable a to a key
x (write(x, a)), or aborting the transaction execution, rolling back all keys written by it. As
described in Chapter 2, database instructions describe events with homonymous types. We
call reads events to those whose type is read, and write events to those whose type is write.
For a read/write event e, we use var(e) to denote the key x.

3.2.2 Program Semantics
We define a small-step operational semantics for transactional programs, parametrized by an
isolation level ι. The semantics keeps a history of previously executed database accesses in
order to maintain consistency with ι.
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For readability, we define a program as a partial function P : SessId⇀ Sess that associates
session identifiers in SessId with concrete code as defined in Figure 3.1 (i.e., sequences of
transactions). Similarly, the session order so in a history is defined as a partial function
so : SessId⇀ Tlogs∗ that associates session identifiers with sequences of transaction logs. Two
transaction logs are ordered by so if one occurs before the other in some sequence so(j) with
j ∈ SessId.

The operational semantics is defined as a transition relation ⇒I between program config-
urations, which are defined as tuples containing the following:

• history h storing the events generated by database accesses executed in the past,

• a valuation map γ⃗ that records local variable values in the current transaction of each
session (γ⃗ associates identifiers of sessions with valuations of local variables),

• a map B⃗ that stores the code of each live transaction (mapping session identifiers to
code),

• sessions/transactions P that remain to be executed from the original program.

The relation ⇒I is defined using the set of rules described in Figure 3.2. Figure 3.2 uses
the following notation. Let h be a history that contains a representation of so as above. We
use h ⊕j (t, E, pot) to denote a history where (t, E, pot) is appended to so(j). In particular,
we use h ⊕j (e, begin) to denote the history where (t, {(e, begin)}, ∅) with t a fresh id is
appended to so(j). Also, for an event e, h⊕j e is the history obtained from h by adding e to
the last transaction log in so(j) and as a last event in the program order of this log (i.e., if
so(j) = σ; (t, E, pot), then the session order so′ of h⊕je is defined by so′(k) = so(k) for all k ̸= j
and so′(j) = σ; (t, E ∪ {e}, pot ∪ {(e′, e) : e′ ∈ E})). Finally, for a history h = (T, so,wr),
h⊕ wr(t, e) is the history obtained from h by adding (t, e) to the write-read relation.

We briefly describe the rules in Figure 3.2. The spawn rule starts a new transaction in a
session j provided that this session has no other live transaction (B⃗(j) = ϵ). It adds a trans-
action log with a single begin event to the history and schedules the body of the transaction.
if-true and if-false rules check the truth value of a Boolean condition of an if conditional.
local models the execution of an assignment to a local variable which does not impact the
stored history. read-local and read-extern concern read instructions. read-local
handles the case where the read follows a write on the variable x in the same transaction:
the read returns the value written by the last write on x in that transaction. read-extern
corresponds to reading a value written in another transaction t′. The transaction t′ is chosen
non-deterministically as long as extending the current history with the write-read dependency
associated to this choice leads to a history that still satisfies ι. Depending on the isolation
level, there may not exist a transaction t′ the read can read from (see Figure 3.13 for a con-
crete example). read-extern applies only when the executing transaction contains no write
on the same variable. commit confirms the end of a transaction making its writes visible
while abort ends the transaction’s execution immediately.

An initial program configuration for a program P contains the program P, a history
h = ({t0}, ∅, ∅) where t0 is a transaction log containing writes that write the initial value for
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spawn
t fresh e fresh P(j) = begin;Body; commit;S B⃗(j) = ϵ

h, γ⃗, B⃗,P⇒ι h⊕j (t, {(e, begin)}, ∅), γ⃗[j 7→ ∅], B⃗[j 7→ Body; commit],P[j 7→ S]

if-true
ψ(x⃗)[x 7→ γ⃗(j)(x) : x ∈ x⃗] B⃗(j) = if(ψ(x⃗)){Instr};B

h, γ⃗, B⃗,P⇒ι h, γ⃗, B⃗[j 7→ Instr;B],P

if-false
¬ψ(x⃗)[x 7→ γ⃗(j)(x) : x ∈ x⃗] B⃗(j) = if(ψ(x⃗)){Instr};B

h, γ⃗, B⃗,P⇒ι h, γ⃗, B⃗[j 7→ B],P

local
v = γ⃗(j)(e) B⃗(j) = a := e;B

h, γ⃗, B⃗,P⇒ι h, γ⃗[(j, x) 7→ v], B⃗[j 7→ B],P

write
v = γ⃗(j)(x) e fresh B⃗(j) = write(x, x);B h⊕j (e, write(x, v)) satisfies ι

h, γ⃗, B⃗,P⇒ι h⊕j (e, write(x, v)), γ⃗, B⃗[j 7→ B],P

read-local
writes(last(h, j)) contains a write(x, v) event e fresh B⃗(j) = x := read(x);B

h, γ⃗, B⃗,P⇒ι h⊕j (e, read(x)), γ⃗[(j, x) 7→ v], B⃗[j 7→ B],P

read-extern
writes(last(h, j)) does not contain a write(x, v) event e fresh B⃗(j) = x := read(x);B
h = (T, so,wr) t = last(h, j) write(x, v) ∈ writes(t′) with t′ ∈ cmtt(h) and t ̸= t′

h′ = (h⊕j (e, read(x)))⊕ wr(t′, e) h′ satisfies ι

h, γ⃗, B⃗,P⇒ι h
′, γ⃗[(j, x) 7→ v], B⃗[j 7→ B],P

commit
e fresh B⃗(j) = commit

h, γ⃗, B⃗,P⇒ι h⊕j (e, commit), γ⃗, B⃗[j 7→ ϵ],P

abort
e fresh B⃗(j) = abort;B

h, γ⃗, B⃗,P⇒ι h⊕j (e, abort), γ⃗, B⃗[j 7→ ϵ],P

Figure 3.2: An operational semantics for transactional programs. Above, last(h, j) denotes
the last transaction log in the session order so(j) of h, and cmtt(h) denotes the set of trans-
action logs in h that are committed

.

all variables, and empty current transaction code (B = ϵ). A program execution of a program
P under an isolation level ι is a sequence of program configurations c0 . . . cn where c0 is an
initial configuration for P, and for every 0 ≤ m < n, cm ⇒I cm+1. We say that cn is reachable
w.r.t. ι from c0. The history of such an execution is the history h in the last configuration cn.
A configuration is called final if it contains the empty program (P = ∅). We denote by histι(P)
to the set of all histories of an execution of P under ι that ends in a final configuration.
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3.3 Prefix-Closed and Causally-Extensible Isolation Levels
We define two properties of isolation levels, prefix-closure and causal extensibility, which
enable efficient DPOR algorithms (as shown in Section 3.5).

3.3.1 Prefix Closedness
For a relation R ⊆ A×A, the restriction of R to A′ ×A′, denoted by R ↓ A′ ×A′, is defined
by {(a, b) : (a, b) ∈ R, a, b ∈ A′}. Also, a set A′ is called R-downward closed when it contains
a ∈ A every time it contains some b ∈ A with (a, b) ∈ R.

init

read(x)
read(y)

write(x, 2)

read(x)

wrxso
wrx

so

wrx
so

(a) A history.

init

read(x)
read(y)

write(x, 2)

wrxso
wrx

so

(b) A prefix.

init

read(x)
read(y)

read(x)

wrxso
so

(c) Not a prefix.

Figure 3.3: Explaining the notion of prefix of a history. init denotes the transaction log
writing initial values. Boxes group events from the same transaction.

A prefix of a transaction log (t, E, pot) is a transaction log (t, E′, pot ↓ E′ × E′) such
that E′ is pot-downward closed. A prefix of a history h = (T, so,wr) is a history h′ =
(T ′, so ↓ T ′ × T ′,wr ↓ T ′ × T ′) such that every transaction log in T ′ is a prefix of a different
transaction log in T but carrying the same id, events(h′) ⊆ events(h), and events(h′) is
(po ∪ so ∪wr)∗-downward closed. For example, the history pictured in Fig. 3.3b is a prefix of
the one in Fig. 3.3a while the history in Fig. 3.3c is not. The transactions on the bottom of
Fig. 3.3c have a wr predecessor in Fig. 3.3a which is not included.

Definition 3.3.1. An isolation level ι is called prefix-closed when every prefix of an consistent
w.r.t. ι history is also consistent w.r.t. ι.

Every isolation level ι discussed in Figure 2.4 is prefix-closed because if a history h is
consistent w.r.t. ι with a commit order co, then the restriction of co to the transactions from
a prefix h′ of h satisfies the corresponding axiom(s) when interpreted over h′.

Theorem 3.3.2. Read Committed, Read Atomic, Transactional Causal Consistency, Snap-
shot Isolation, and Serializability are prefix-closed.

3.3.2 Causal Extensibility
We start with an example to explain causal extensibility. Let us consider the histories h1 and
h2 in Figures 3.4a and 3.4b, respectively, without the events read(y) and write(y, 2) written
in blue bold font. These histories satisfy Read Atomic. The history h1 can be extended by
adding the event read(y) and the wr dependency wr(init, read(y)) while still satisfying Read
Atomic. On the other hand, the history h2 can not be extended with the event write(y, 2)
while still satisfying Read Atomic. Intuitively, if the reading transaction on the bottom reads
x from the transaction on the right, then it should read y from the same transaction because
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init

read(x)
read(y)

write(x, 2)

wrxso

so

(a) Extensible history.

init

read(x)
read(y)

write(x, 2)
write(y, 2)

wrxso wrx

so

(b) Non-extensible history.

Figure 3.4: Explaining causal extensibility. init denotes the
transaction log writing initial values. Boxes group events from
the same transaction.

init

write(z, 1)
read(x)
write(y, 1)

write(z, 2)
read(y)
write(x, 2)

wrx wry

Figure 3.5: A counter-example
to causal extensibility for SI
and SER. The so-edges from
init to the other transactions
are omitted for legibility.

this is more “recent” than init w.r.t. session order. The essential difference between these
two extensions is that the first concerns a transaction which is maximal in (so∪wr)+ while the
second no. The extension of h2 concerns the transaction on the right in Figure 3.4b which is
a wr predecessor of the reading transaction. Causal extensibility will require that at least the
(so∪wr)+ maximal (pending) transactions can always be extended with any event while still
preserving consistency. The restriction to (so∪wr)+ maximal transactions is intuitively related
to the fact that transactions should not read from non-committed (pending) transactions, e.g.,
the reading transaction in h2 should not read from the still pending transaction that writes
x and later y.

Formally, let h = (T, so,wr) be a history. A transaction t is called (so ∪ wr)+-maximal in
h if h does not contain any transaction t′ such that (t, t′) ∈ (so ∪ wr)+. We define a causal
extension of a pending transaction t in h with an event e as a history h′ such that:

• e is added to t as a maximal element of pot,

• if e is a read event and t does not contain a write to var(e), then wr is extended with
some tuple (t′, e) such that (t′, t) ∈ (so∪wr)+ in h (if e is a read event and t does contain
a write to var(e), then the value returned by e is the value written by the latest write
on var(e) before e in t; the definition of the return value in this case is unique and does
not involve wr dependencies),

• the other elements of h remain unchanged in h′.

For example, Figure 3.6b and 3.6c present two causal extensions with a read(x) event of
the transaction t4 in the history h in Figure 3.6a. The new read event reads from transaction
t1 or t3 which were already related by (so∪wr)+ to t4. An extension of h where the new read
event reads from t2 is not a causal extension because (t2, t4) ̸∈ (so ∪ wr)+.

Definition 3.3.3. An isolation level ι is called causally-extensible if for every consistent
w.r.t. ι history h, every (so ∪ wr)+-maximal pending transaction t in h, and every event e,
there exists a causal extension h′ of t with e that is consistent w.r.t. ι.
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init

write(x, 1)
write(y, 1)

t1

write(x, 2)

t2

write(x, 3)

t3

read(y)
· · ·

t4so
so

wry

so so

(a) History h.

init

write(x, 1)
write(y, 1)

t1

write(x, 2)

t2

write(x, 3)

t3

read(y)
read(x)

t4so
so

wrx,y

so so

(b) t4 reads x and y from t1.

init

write(x, 1)
write(y, 1)

t1

write(x, 2)

t2

write(x, 3)

t3

read(y)
read(x)

t4

wrxsowry

so

so so

(c) t4 reads x from t3, y from t1.

Figure 3.6: Two causal extensions of the history h on the left with the read(x) event written
in blue.

Theorem 3.3.4. Transactional Causal Consistency, Read Atomic, and Read Committed are
causally-extensible.

Proof. Let ι be an isolation level in {RA, RC, TCC} and let h be a history consistent w.r.t. ι. We
show that for every (so∪wr)+-maximal pending transaction t, there exists a causal extension
of t in h, h′, that is consistent w.r.t. ι. In particular, we show that if ξ = (h, co) is a consistent
execution of h w.r.t. ι, then ξ′ = (h′, co) is also a consistent execution of h′ w.r.t. ι. Two
cases arise, depending on whether the event e is a read event or not.

On one hand, if e is not a read event, we consider h′ = h ⊕j e; where j = ses(t).
Let us denote so′ and wr′ to the session order and write-read relations respectively used by
h′. We reason by contradiction, assuming that ξ′ is not consistent w.r.t. ι and reaching a
contradiction. In such case, there must exists a variable x, a read event r and two distinct
transactions t1, t2 s.t. (t1, r) ∈ wr′x, visι(t2, r, x) holds in ξ′ but (t1, t2) ∈ co; where visι refers
to the visibility relation of its homonymous axiom. We observe that, by construction of h′, for
every variable x and every event e, wr′x

−1(e) = wr−1
x (e) and so′ = so. Hence, by the definition

of ι, (t1, r) ∈ wrx and visι(t2, r, x) holds in ξ. However, this implies that ξ is not consistent
w.r.t. ι; which is impossible by hypothesis. Therefore, we deduce that ξ′ is consistent w.r.t.
ι.

On the other hand, if e is a read event, we consider the history h′ ⊕j e⊕ wr(tx, e); where
j = ses(t), x = var(e) and tx is the transaction described using Equation (3.1). Transaction
tx is well defined as (init, le) ∈ so. By the definition of RA, RC and TCC, h′ is a causal extension
of h.

tx = max
co
{t ∈ T | visι(t2, le, x) ∧ t writes x} (3.1)

where le = maxpo t.
We prove the result once again by contrapositive, assuming that ξ′ is not consistent w.r.t.

ι. Let us denote by so′ and wr′ the session order and write-read relations of h′. In such
case, there must exists a variable y, distinct transactions t1, t2 and read event r s.t. (t2, r) ∈
wr′y, visι(t2, r, y) holds in ξ′ but (t1, t2) ∈ co. First, for every event e′ ̸= r and variable x,
wr′x

−1(e′) = wr−1
x (r). Moreover, as t is (so∪wr)+-maximal in h, it is also (so′∪wr′)+-maximal
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in h′. Therefore, by the definitions of ι and tx, if e′ ̸= r, visι(t2, r, y) holds in ξ. Altogether, we
deduce that if e′ ̸= r, (t2, r) ∈ wry, visι(t2, r, y) holds in ξ and (t1, t2) ∈ co. As ξ is consistent
w.r.t. ι, this is not possible; so we deduce that r = e. If r = e, then y = x and t1 = tx.
However, by the definition of tx, (t2, tx) ∈ co; which is impossible as (t1, t2) ∈ co and co is a
total order. In conclusion, the initial assumption is false; so co witnesses that h′ is consistent
w.r.t. ι.

Snapshot Isolation and Serializability are not causally extensible. Figure 3.5 presents
a counter-example to causal extensibility. Let h be the history that does not contain the
write(x, 2) written in blue bold font and let h′ be the causal extension of h with this event.
The history h′ does not satisfy neither Snapshot Isolation nor Serializability although h does:
the commit order co defined as init <co< t2 <co t1 is the only commit order witnessing h’s
consistency w.r.t. Snapshot Isolation and Serializability; but it does not witness consistency
for h′ as (init, t1) ∈ wrx but for every axiom a ∈ {SER, SI}, visa(t2, t1, x) holds using co. Note
that the causal extension of a history with a write event is unique.

3.4 Swapping-Based Model Checking Algorithms
We define a class of stateless model checking algorithms for enumerating executions of a given
transactional program, that we call swapping-based algorithms. Section 3.5 will describe a
concrete instance that applies to isolation levels that are prefix-closed and causally extensible.

Algorithm 1 explore algorithm
1: function explore(P, h<, locals)
2: j, e, γ ← Next(P, h<, locals)
3: locals′ ← locals[e 7→ γ]
4: if e = ⊥ and Valid(h) then
5: output h, locals′

6: else if op(e) = read then
7: for all t ∈ ValidWrites(h, e) do
8: h′< ← h< ⊕j e⊕ wr(t, e)
9: explore(P, h′<, locals

′)
10: exploreSwaps(P, h′<, locals

′)

11: else
12: h′< ← h< ⊕j e
13: explore(P, h′<, locals

′)
14: exploreSwaps(P, h′<, locals

′)

These algorithms are defined by the recursive function explore listed in Algorithm 1.
The function explore receives as input a program P, an ordered history h<, which is a pair
(h,<) of a history and a total order < on all the events in h, and a mapping locals that
associates each event e in h with the valuation of local variables in the transaction of e (tr(e))

23



Chapter 3. Dynamic Partial Order Reduction for Checking Correctness against Transaction
Isolation Levels

just before executing e. For an ordered history (h,<) with h = (T, so,wr), we assume that <
is consistent with po, so, and wr, i.e., e1 < e2 if (tr(e1), tr(e2)) ∈ (so ∪ wr)+ or (e1, e2) ∈ po.
Initially, the ordered history and the mapping locals are empty.

The function explore starts by calling Next to obtain an event representing the next
database access in some pending transaction of P, or a begin/commit/abort event for starting
or ending a transaction. This event is associated to some session j. For example, a typical
implementation of Next would be choosing one of the pending transactions (in some session
j), executing all local instructions until the next database instruction in that transaction
(applying the transition rules if-true, if-false and local), and returning the event e
corresponding to such database instruction and the current local state γ. Next may also
return ⊥ if the program finished. If Next returns ⊥, then the function Valid can be used to
filter executions that satisfy the intended isolation level before outputting the current history
and local states (the use of Valid will become relevant in Section 3.6).

Otherwise, the event e is added to the ordered history h<. If e is a read event, then
ValidWrites computes a set of write events w in the current history that are valid for
e, i.e., adding the event e along with the wr dependency (w, e) leads to a history that still
satisfies the intended isolation level.

Concerning notations, let (h,<) be an ordered history where so is represented as a function
so : SessId⇀ Tlogs∗ (as in § 3.2.2). We define the ordered history (h,<)⊕j e as (h⊕j e,< · e)
where < · e means that e is added as the last element of <.

Algorithm 2 exploreSwaps

1: function exploreSwaps(P, h<, locals)
2: l← ComputeReorderings(h<)
3: for all (α, β) ∈ l do
4: if Optimality(h<, α, β, locals) then
5: explore(P,Swap(h<, α, β, locals))

Once an event is added to the current history, the algorithm may explore other histories
obtained by re-ordering events in the current one. Such re-orderings are required for com-
pleteness. New read events can only read from writes executed in the past which limits the
set of explored histories to the scheduling imposed by Next. Without re-orderings, writes
scheduled later by Next cannot be read by read events executed in the past, although this
may be permitted by the isolation level.

The function exploreSwaps calls ComputeReorderings to compute pairs of se-
quences of events α, β that should be re-ordered; α and β are contiguous and disjoint subse-
quences of the total order <, and α should end before β (since β will be re-ordered before α).
Typically, α would contain a read event r and β a write event w such that re-ordering the two
enables r to read from w. Ensuring soundness and avoiding redundancy, i.e., exploring the
same history multiple times, may require restricting the application of such re-orderings. This
is modeled by the Boolean condition called Optimality. If this condition holds, the new ex-
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plored histories are computed by the function Swap. This function returns local states as well,
which are necessary for continuing the exploration. We assume that Swap(h<, α, β, locals)
returns pairs (h′<′ , locals

′) such that

1. h′ contains at least the events in α and β,

2. h′ without the events in α is a prefix of h, and

3. if a read r in α reads from different writes in h and h′ (the wr relations of h and h′

associate different transactions to r), then r is the last event in its transaction (w.r.t.
po).

The first condition makes the re-ordering “meaningful” while the last two conditions ensure
that the history h′ is feasible by construction, i.e., it can be obtained using the operational
semantics defined in Section 3.2.2. Feasibility of h′ is ensured by keeping prefixes of transac-
tion logs from h and all their wr dependencies except possibly for read events in α (second
condition). In particular, for events in β, it implies that h′ contains all their (po ∪ so ∪ wr)∗

predecessors. Also, the change of a read-from dependency is restricted to the last read in a
transaction (third condition) because changing the value returned by a read may disable later
events in the same transaction1.

A concrete implementation of explore is called:

• sound w.r.t. ι if it outputs only histories in histι(P) for every program P,

• complete w.r.t. ι if it outputs every history in histι(P) for every program P,

• optimal if it does not output the same history twice,

• strongly optimal if it is optimal and never engages in fruitless explorations, i.e., explore
is never called (recursively) on a history h that does not satisfy ι, and every call to
explore results in an output or another recursive call to explore.

3.5 Swapping-Based Model Checking Algorithms for Prefix-
Closed and Causally-Extensible Isolation Levels

We define a concrete implementation of explore, denoted as explore-ce, that is sound
w.r.t. ι, complete w.r.t. ι, and strongly optimal for any isolation level ι that is prefix-closed
and causally-extensible. The isolation level ι is a parameter of explore-ce. The space
complexity of explore-ce is polynomial in the size of the program. An important invariant
of this implementation is that it explores histories with at most one pending transaction
and this transaction is maximal in session order. This invariant is used to avoid fruitless
explorations: since ι is assumed to be causally-extensible, there always exists an extension of
the current history with one more event that continues to satisfy ι. Moreover, this invariant
is sufficient to guarantee completeness in the sense defined above of exploring all histories of
“full” program executions (that end in a final configuration).

1Different wr dependencies for previous reads can be explored in other steps of the algorithm.
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Section 3.5.1 describes the implementations of Next and ValidWrites used to extend
a given execution, Section 3.5.2 describes the functions ComputeReorderings and Swap
used to compute re-ordered executions, and Section 3.5.3 describes the Optimality restric-
tion on re-ordering. We assume that the function Valid is defined as simply Valid(h) ::= true
(no filter before outputting). Section 3.5.4 discusses correctness arguments.

3.5.1 Extending Histories According to An Oracle Order
The function Next generates events representing database accesses to extend an execution,
according to an arbitrary but fixed order between the transactions in the program called oracle
order. We assume that the oracle order, denoted by <or, is consistent with the order between
transactions in the same session of the program. The extension of <or to events is defined as
expected. For example, assuming that each session has an id, an oracle order can be defined
by an order on session ids along with the session order so: transactions from sessions with
smaller ids are considered first and the order between transactions in the same session follows
so.

Next returns a new event of the transaction that is not already completed and that is
minimal according to <or. In more detail, if j, e, γ is the output of Next(P, h<, locals), then
either:

• the last transaction log t of session j (w.r.t. so) in h is pending, and t is the smallest
among pending transaction logs in h w.r.t. <or

• h contains no pending transaction logs and the next transaction of sessions j is the
smallest among not yet started transactions in the program w.r.t. <or.

begin;
a = read(x);
if(a == 3)
write(y ,1);

commit
begin;
b = read(x);
c = read(y);
commit

begin;
d = read(x);
write(x,3);
commit

(a) Program (2 sessions).

init

read(x)
write(y, 1)

t1

read(x)
write(x, 3)

t3

read(x)
read(y)

t2
or or

wr

or

so

wr

(b) An incomplete history.

init

read(x)
write(y, 1)

t1

read(x)
write(x, 3)

t3

read(x)
read(y)

t2
or or

wr

or

so

wr

(c) An extension.

Figure 3.7: A program with two sessions (a), a history h (b), and an extension of h with an
event returned by Next (c). The so-edges from init to the other transactions are omitted
for legibility. We use edges labeled by or to represent the oracle order <or. Events in gray are
not yet added to the history.

This implementation of Next is deterministic and it prioritizes the completion of pending
transactions. The latter is useful to maintain the invariant that any history explored by the
algorithm has at most one pending transaction. Preserving this invariant requires that the
histories given as input to Next also have at most one pending transaction. This is discussed
further when explaining the process of re-ordering events in Section 3.5.2.
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For example, consider the program in Figure 3.7a, an oracle order which orders the two
transactions in the left session before the transaction in the right session, and the history h in
Figure 3.7b. Since the local state of the pending transaction on the left stores 3 to the local
variable a (as a result of the previous read(x) event) and the Boolean condition in if holds,
Next returns the event write(y, 1) when called with h.

begin;
write(x,1);
write(y ,1);
commit

begin;
a = read(y);
commit
begin;
b = read(x);
commit

(a) Program (2 ses-
sions).

init

write(x, 1)
write(y, 1)

read(y)

read(x)

so

so
wry

so

(b) Current history.

init

write(x, 1)
write(y, 1)

read(y)

read(x)

so

so
wry

so

wrx

(c) One extension.

init

write(x, 1)
write(y, 1)

read(y)

read(x)

so

so
wry

sowrx

(d) Another extension.

Figure 3.8: Extensions of a history by adding a read event. Events in gray are not yet added
to the history.

According to Algorithm 1, if the event returned by Next is not a read event, then it is
simply added to the current history as the maximal element of the order < (cf. the definition
of ⊕j on ordered histories). If it is a read event, then adding this event may result in multiple
histories depending on the chosen wr dependency. For example, in Figure 3.8, extending the
history in Figure 3.8b with the read(x) event could result in two different histories, pictured
in Figure 3.8c and 3.8d, depending on the write with whom this read event is associated by
wr. However, under TCC, the latter history is inconsistent. The function ValidWrites limits
the choices to those that preserve consistency with the intended isolation level ι, i.e.,

ValidWrites(h, e) := {t ∈ cmtt(h) | h⊕j e⊕ wr(t, e) is consistent w.r.t. ι}

where cmtt(h) is the set of committed transactions in h.

3.5.2 Re-Ordering Events in Histories
After extending the current history with one more event, explore may be called recursively
on other histories obtained by re-ordering events in the current one (and dropping some other
events).

Re-ordering events must preserve the invariant of producing histories with at most one
pending transaction. To explain the use of this invariant in avoiding fruitless explorations,
let us consider the program in Figure 3.9a assuming an exploration under Read Committed.
The oracle order gives priority to the transaction on the left. Assume that the current his-
tory reached by the exploration is the one pictured in Figure 3.9b (the last added event is
write(x, 2)). Swapping write(x, 2) with read(x) would result in the history pictured in Fig-
ure 3.9c. To ensure that this swap produces a new history which was not explored in the
past, the wrx dependency of read(x) is changed towards the write(x, 2) transaction (we detail
this later). By the definition of next (and the oracle order), this history shall be extended
with read(y), and this read event will be associated by wry to the only available write(y,_)
event from init. This is pictured in Figure 3.9d. The next exploration step will extend the
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begin;
a = read(x);
b = read(y);
commit

begin;
write(x,2);
write(y ,2);
commit

(a) Program (2 sessions).

init

read(x)
read(y)

t1

write(x, 2)
write(y, 2)

t2

wr

(b) Current.

init

read(x)
read(y)

t2

write(x, 2)
write(y, 2)

t1

wrx

(c) Reorder.

init

read(x)
read(y)

t2

write(x, 2)
write(y, 2)

t1

wrx

wry

(d) Extended.

init

read(x)
read(y)

t2

write(x, 2)
write(y, 2)

t1

wrx

wry

(e) Inconsistent.

Figure 3.9: Example of inconsistency after swapping two events. All so-edges from init to
the other transactions are omitted for legibility. The history order < is represented by the
top to bottom order in each figure. Events in gray are not yet added to the history.

history with write(y, 2) (the only extension possible) which however, results in a history that
does not satisfy Read Committed, thereby, the recursive exploration branch being blocked.
The core issue is related to the history in Figure 3.9d which has a pending transaction that
is not (so ∪ wr)+-maximal. Being able to extend such a transaction while maintaining con-
sistency is not guaranteed by Read Committed (and any other isolation level we consider).
Nevertheless, causal extensibility guarantees the existence of an extension for pending trans-
actions that are (so∪wr)+-maximal. We enforce this requirement by restricting the explored
histories to have at most one pending transaction. This pending transaction will necessarily
be (so ∪ wr)+-maximal.

To enforce histories with at most one pending transaction, the function
ComputeReorderings, which identifies events to reorder, has a non-empty return
value only when the last added event is commit (the end of a transaction)2. Therefore, in
such a case, it returns pairs of some transaction log prefix ending in a read r and the last
completed transaction log t, such that the transaction log containing r and t are not causally
dependent (i.e., related by (so ∪ wr)∗) (the transaction log prefix ending in r and t play the
role of the subsequences α and respectively, β in the description of ComputeReorderings
from Section 3.4). To simplify the notation, we will assume that ComputeReorderings
returns pairs (r, t).

ComputeReorderings(h<) :=

(r, t) ∈ Events × T

∣∣∣∣∣∣∣∣
t is complete ∧
t includes the last event in < ∧
r ∈ reads(T ) ∧ t writes var(r) ∧
tr(r) < t ∧ (tr(r), t) ̸∈ (so ∪ wr)∗



For example, for the program in Figure 3.10a and the history h in Figure 3.10b,
ComputeReorderings(h) would return (r1, t4) and (r2, t4) where r1 and r2 are the read(x)
events in t1 and t2 respectively.

2Aborted transactions have no visible effect on the state of the database so swapping an aborted transaction
cannot produce a new meaningful history.
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begin;
a = read(x);
if(a == 0){

abort
}
write(y ,1)
commit
begin;
b = read(x);
commit

begin;
write(y ,3);
commit
begin;
write(x,4);
commit

(a) Program (2 sessions).

init

read(x)
abort

t1

read(x)

t2

write(y, 3)

t3

write(x, 4)

t4

so

so

wrx wrx

(b) Current.

init

read(x)
abort

t1

read(x)

t2

write(y, 3)

t3

write(x, 4)

t4

so

so

wrx

wrx

(c) Swap t2 and t4.

init

read(x)
write(y, 1)

t1

read(x)

t2

write(y, 3)

t3

write(x, 4)

t4

so

so

wrx

(d) Swap t1 and t4.

Figure 3.10: Re-ordering events. All so-edges from init to other transactions are omitted
for legibility. The history order < is represented by the top to bottom order in each figure.
Events in gray are deleted from the history.

For a pair (r, t), the function Swap produces a new history h′ which contains all the
events ordered before r (w.r.t. <), the transaction t and all its (so ∪ wr)∗ predecessors, and
the event r reading from t. All the other events are removed. Note that the po predecessors
of r from the same transaction are ordered before r by < and they will be also included in h′.
The history h′ without r is a prefix of the input history h. By definition, the only pending
transaction in h′ is the one containing the read r. The order relation is updated by moving
the transaction containing the read r to be the last; it remains unchanged for the rest of the
events.

Swap(h<, r, t, locals) :=
(
(h′ = (h \D)⊕ wr(t, r), <′), locals′

)
where

locals′ = locals ↓ events(h′)
D = {e | r < e ∧ (tr(e), t) ̸∈ (so ∪ wr)∗} and
<′ =

(
<↓ (events(h′) \ events(tr(r)))

)
·D tr(r)

Above, h\D is the prefix of h obtained by deleting all the events in D from its transaction
logs; a transaction log is removed altogether if it becomes empty. Also, h′′ ⊕ wr(t, r) denotes
an update of the wr relation of h′′ where any pair (_, r) is replaced by (t, r). Finally, the
relation <′′ ·Dtr(r) is an extension of the total order <′′ obtained by appending the events in
events(tr(r)) that are not in D according to program order.

Continuing with the example of Figure 3.10, when swapping r1 and t4, all the events in
transaction t2 belong to D and they will be removed. This is shown in Figure 3.10d. Note
that transaction t1 aborted in Figure 3.10b while it will commit in Figure 3.10d (because the
value read from x changed). When swapping r2 and t4, no event but the commit in t2 will be
deleted (Figure 3.10c).
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3.5.3 Ensuring Optimality
Simply extending histories according to Next and making recursive calls on re-ordered his-
tories whenever they are consistent w.r.t. ι guarantees soundness and completeness, but it
does not guarantee optimality. Intuitively, the source of redundancy is related to the fact that
applying Swap on different histories may give the same result.

begin;
write(x,2)
commit

begin;
a=read(x);
commit

begin;
b=read(x);
commit

begin;
write(x,4);
commit

(a) Program (4 sessions).

init

write(x, 2)

t1

read(x)

t2

read(x)

t3

write(x, 2)

t4

wr

(b) Current.

init

write(x, 2)

t1

read(x)

t2

read(x)

t3

write(x, 4)

t4

wr wr

(c) t3 reads init.

init

write(x, 2)

t1

read(x)

t2

read(x)

t3

write(x, 4)

t4

wr

wr

(d) t3 reads t1.

init

write(x, 2)

t1

read(x)

t2

read(x)

t3

write(x, 4)

t4

wr

(e) After swap.

Figure 3.11: Re-ordering events versus optimality. We assume an oracle order orders transac-
tion from left to right, top to bottom in the program. All transaction logs are history-ordered
top to bottom according to their position in the figure. Events in gray are not yet added to
the history.

As a first example, consider the program in Figure 3.11a with 2 transactions that only
read some variable x and 2 transactions that only write to x, each transaction in a different
session. Assume that explore reaches the ordered history in Figure 3.11b and Next is
about to return the second reading transaction. explore will be called recursively on the
two histories in Figure 3.11c and Figure 3.11d that differ in the write that this last read
is reading from (the initial write or the first write transaction). On both branches of the
recursion, Next will extend the history with the last write transaction written in blue bold
font. For both histories, swapping this last write with the first read on x will result in the
history in Figure 3.11e (cf. the definition of ComputeReorderings and Swap). Thus, both
branches of the recursion will continue extending the same history and optimality is violated.
The source of non-optimality is related to wr dependencies that are removed during the Swap
computation. The histories in Figure 3.11c and Figure 3.11d differ in the wr dependency
involving the last read, but this difference was discarded during the Swap computation. To
avoid this behavior, Swap is enabled only on histories where the discarded wr dependencies
relate to some “fixed” set of writes, i.e., latest3 writes w.r.t. < that guarantee consistency by
causal extensibility (see the definition of readLatestι(_,_,_) below). By causal extensibility, a
read r can always read from a write which already belongs to its “causal past”, i.e., predecessors
in (so ∪ wr)∗ excluding the wr dependency for r. For every discarded wr dependency, it is
required that the read reads from the latest such write w.r.t. <. In this example, re-ordering

3We use latest writes because they are uniquely defined. In principle, other ways of identifying some unique
set of writes could be used.
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is enabled only when the second read(x) reads from the initial write; write(x, 2) does not
belong to its “causal past” (when the wr dependency of the read itself is excluded).

begin;
a=read(x);
commit

begin;
b=read(y);
commit

begin;
write(y ,3);
commit

begin;
write(x,4);
commit

(a) Program (4 sessions).

init

read(x)

t1

read(y)

t2

write(y, 3)

t3

write(x, 4)

t4

wr

wr

(b) Current history.

init

read(x)

t1

read(y)

t2

write(y, 3)

t3

write(x, 4)

t4

wr

wr

(c) Swap t2 and t3.

init

read(x)

t1

write(x, 4)

t4

wr

(d) Swap t1 and t4.

Figure 3.12: Re-ordering the same read on different branches of the recursion.

The restriction above is not sufficient, because the two histories for which Swap gives the
same result may not be generated during the same recursive call (for different wr choices when
adding a read). For example, consider the program in Figure 3.12a that has four sessions each
containing a single transaction. explore may compute the history h pictured in Figure 3.12b.
Before adding transaction t4, explore can re-order t3 and t2 and then extend with t4 and
arrive at the history h1 in Figure 3.12c. Also, after adding t4, it can re-order t1 and t4 and
arrive at the history h2 in Figure 3.12d. However, swapping the same t1 and t4 in h1 leads to
the same history h2, thereby, having two recursive branches that end up with the same input
and violate optimality. Swapping t1 and t4 in h1 should not be enabled because the read(y)
to be removed by Swap has been swapped in the past. Removing it makes it possible that
this recursive branch explores that wr choice for read(y) again.

The Optimality condition restricting re-orderings requires that the re-ordered history
be consistent w.r.t. ι and that every read deleted by Swap or the re-ordered read r (whose wr
dependency is modified) reads from a latest valid write, cf. the example in Figure 3.11, and
it is not already swapped, cf. the example in Figure 3.12 (the set D is defined as in Swap):

Optimality(h<, r, t, locals) := the history returned by Swap(h<, r, t, locals) satisfies ι ∧
∀r′ ∈ reads(h) ∩ (D ∪ {r}). ¬swapped(h<, r′) ∧

readLatestι(h<, r
′, t)

A read r reads from a causally latest valid transaction, denoted as readLatestι(h<, r,), if
reading from any other later transaction t′ w.r.t. < which is in the “causal past” of tr(r)
in h< violates the isolation level ι. Formally, assuming that tr is the transaction such that
(tr, r) ∈ wr in h,

readLatestι(h<, r, t) := tr = max
<

{
t′ writes var(r) ∧ (t′, tr(r)) ∈ (so ∪ wr)∗ holds in h′

∧ h′ ⊕ r ⊕ wr(t′, r) is consistent w.r.t. ι

}
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where h′ = h \ {e | r ≤ e ∧ (tr(e), t) ̸∈ (so ∪ wr)∗}.
We say that a read r is swapped in h< when (1) r reads from a transaction t that is a

successor in the oracle order <or (the transaction was added by Next after the read), which
is now a predecessor4 in the history order <, (2) there is no transaction t′ that is before r
in both <or and <, and which is a (so ∪ wr)+ successor of t, and (3) r is the first read in its
transaction to read from t. Formally:

swapped(h<, r) := t < r ∧ t >or r ∧ ∀t′ ∈ h. t′ <or tr(r) =⇒ (r < t′ ∨ (t, t′) ̸∈ (so ∪ wr)+)

∧ ∀r′ ∈ reads(h). (t, r′) ∈ wr =⇒ (r′, r) ̸∈ po

where t = wr−1(r).
Condition (1) states a quite straightforward fact about swaps: r could not have been

involved in a swap if it reads from a predecessor in the oracle order which means that it was
added by Next after the transaction it reads from. Conditions (2) and (3) are used to exclude
spurious classifications as swapped reads. Concerning condition (2), suppose that in a history
h we swap a transaction t with respect a (previous) read event r. Later on, the algorithm
may add a read r′ reading also from t. Condition (2) forbids r′ to be declared as swapped.
Indeed, taking tr(r) as an instantiation of t′, tr(r) is before r′ in both <or and < and it reads
from the same transaction as r′, thereby, being a (so∪wr)+ successor of the transaction read
by r′. Condition (3) forbids that, after swapping r and t in h, later read events from the same
transaction as r can be considered as swapped.

Showing that completeness w.r.t. ι holds despite discarding re-orderings is quite challeng-
ing. Intuitively, it can be shown that if some Swap is not enabled in some history h< for some
pair (r, t) although the result would be consistent w.r.t. ι (i.e., Optimality(h<, r, t, locals)
does not hold because some deleted read is swapped or does not read from a causally latest
transaction), then the algorithm explores another history h′ which coincides with h except for
those deleted reads who are now reading from causally latest transactions. Then, h′ would
satisfy Optimality(h<, r, t, locals), and moreover applying Swap on h′ for the pair (r, t)
would lead to the same result as applying Swap on h, thereby, ensuring completeness.

3.5.4 Correctness
The following theorem states the correctness of the algorithm presented in this section:

Theorem 3.5.1. For any prefix-closed and causally-extensible isolation level ι, explore-ce
is sound w.r.t. ι, complete w.r.t. ι, strongly optimal, and employs polynomial space.

The soundness of explore-ce w.r.t. ι is a consequence of the ValidWrites and
Optimality definitions which guarantee that all histories given to recursive calls are consis-
tent w.r.t. ι, and of the Swap definition which ensures to only produce feasible histories (which
can be obtained using the operational semantics defined in Section 3.2.2). The fact that this
algorithm never engages in fruitless explorations follows easily from causal-extensibility which

4The explore maintains the invariant that every read follows the transaction it reads from in the history
order <.
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ensures that any current history can be extended with any event returned by Next. Polyno-
mial space is also quite straightforward since the for all loops in Algorithm 1 have a linear
number of iterations: the number of iterations of the loop in explore, resp., exploreSwaps,
is bounded by the number of write, resp., read, events in the current history (which is smaller
than the size of the program; recall that we assume bounded programs with no loops as usual
in SMC algorithms). On the other hand, the proofs of completeness w.r.t. ι and optimality
are quite complex.

The completeness of explore-ce w.r.t. ι means that for any given program P, the algo-
rithm outputs every history h in histι(P). The proof of completeness w.r.t. ι (Theorem 3.5.19)
defines a sequence of histories produced by the algorithm starting with an empty history and
ending in h, for every consistent w.r.t. ι history h. It consists of several steps:

1. Defining a canonical total order <h for every unordered partial history h, such that if
the algorithm reaches the ordered history h<, then < and <h coincide (Lemmas 3.5.6
and 3.5.11). This canonical order is useful in future proof steps as it allows to ex-
tend several definitions to arbitrary histories that are not necessarily reachable, such as
Optimality or swapped predicates, by evaluating them on the ordered history using
the canonical order.

2. Defining the notion of oracle-respectfulness, an invariant satisfied by every (partial)
ordered history reached by the algorithm. Briefly, a history is oracle-respectful if it has
only one pending transaction and for every two events e, e′ such that e <or e

′, either
e < e′ or there is a swapped event e′′ in between. We prove in Lemma 3.5.9 that every
reachable history is oracle-respectful. Oracle-respectfulness allow us proving that for
every history h and e, swapped(h, e) holds iff e has been swapped in the computable
path reaching h.

3. Defining a deterministic function prev, the previous function, which takes as input a
partial history (not necessarily reachable) and returns a partial history. We show in
Lemma 3.5.16 that if h is reachable, then prev(h) returns the history computed by the
algorithm just before h (i.e., the previous history in the call stack). We also prove that
if a history h oracle-respectful, then prev(h) is also oracle-respectful (Lemma 3.5.13).

4. Deducing that in particular, as h is reachable, it is oracle-respectful. Then, there is
a finite collection of oracle-respectful histories Hh = {hi}ni=0 such that hn = h, h0 =
(init, ∅, ∅), hn = h and hi = prev(hi+1) (Lemma 3.5.18). The oracle-respectfulness
invariant is key to being able to construct such a collection. In particular, they are used
to prove that hi has at most the same number of swapped events as hi+1 and in case
of equality, hi contain exactly one event less than hi+1 (Lemma 3.5.16), which implies
that the collection is indeed finite (Lemma 3.5.17).

5. Proving that for every history h that is oracle-respectful and consistent w.r.t. ι and
prev(h) is reachable, then h is also reachable (Lemma 3.5.14). Conclude by induction
that every history in Hh is reachable, as h0 is the initial state and hi = prev(hi+1)
Lemma 3.5.18.
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The proof of strong optimality relies on arguments employed for proving completeness
w.r.t. ι. It can be shown that if the algorithm would reach a (partial) history h twice, then
for one of the two exploration branches, the history h′ computed just before h would be
different from prev(h), which contradicts the definition of prev(h).

In terms of time complexity, the explore-ce(ι) algorithm achieves polynomial time be-
tween consecutive outputs for isolation levels ι where checking consistency w.r.t. ι of a history
is polynomial time, e.g., RC, RA, and TCC.

3.5.4.1 Canonical Order of a History

We define a total order for every history that coincides on reachable histories with the history
order. For achieving it, we analyze how the algorithm orders two transaction t, t′ in an ordered
history h<. In what follows, we consider an unordered history h = (T, so,wr); where T, so
and wr represent the set of transactions, session-order and write-read dependencies of h. On
one hand, if (t, t′) ∈ (so ∪ wr)∗, then t < t′. On the other hand, if t and t′ are (so ∪ wr)∗-
incomparable, the algorithm prioritizes the one that is read by a smaller read event according
to or. Combining both arguments recursively we obtain a canonical order for a history, which
is formally defined with the function presented below.

Algorithm 3 Canonical order

1: function canonicalOrder(h, t, t′)
2: return (t, t′) ∈ (so ∪ wr)∗ ∨
3: ((t′, t) ̸∈ (so ∪ wr)∗ ∧minimalDependency(h, t, t′,⊥))
4: function minimalDependency(h, t, t′, e)
5: let a = min<or dep(h, t, e); a′ = min<or dep(h, t′, e)
6: if a ̸= a′ then
7: return a <or a

′

8: else
9: return minimalDependency(h, t, t′, a)

10: function dep(h, t, e)
11: return R(h, t, e) \ {e} ∪ {e′ | e′ ∈ t}; where
12: R(h, t, e) = {r | ∃t′ ∈ T.(t, t′) ∈ (so ∪ wr)∗ ∧ (t′, r) ∈ wr ∧ (tr(r), tr(e)) ∈ (so ∪ wr)∗}

The function canonicalOrder produces a relation between transactions in a history,
denoted ≤h. In algorithm 3’s description, we denote ⊥ to represent the end of the program,
which always exists, and that is so-related with every single transaction.

Firstly, we prove in Corollary 3.5.4 that the canonical order is well-defined for every
pair of transactions in h (i.e. for every pair of distinct transactions t, t′ ∈ T , canon-
icalOrder(h, t, t′) halts). The proof requires proving that minimalDependency(h, t, t′,⊥)
halts (Lemma 3.5.3). For achieving it, we show in Lemma 3.5.2 that the intermediate values a
and a′ computed by dep during recursive calls to function minimalDependency are linked.

Lemma 3.5.2. Let e be an event and let t ∈ T be a transaction. dep(h, t, r′) ⊆ dep(h, t, e);
where r′ = min<or dep(h, t, e). Moreover, if r′ ̸∈ t, the inclusion is strict.
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Proof. For proving the result, we distinguish whether dep(h, t, e) is {e′ | e′ ∈ t} or not. On
one hand, if dep(h, t, e) = {e′ | e′ ∈ t}, the lemma is immediately holds. On the other hand, if
dep(h, t, e) ̸= {e′ | e′ ∈ t}, let us consider r ∈ dep(h, t, r′). We can assume w.l.o.g. that r ̸∈ t;
as otherwise, r trivially belongs to dep(h, t, e). In such case, there exists a transaction t′ ∈ T
s.t. (t, t′) ∈ (so∪wr)∗, (t′, r) ∈ wr and (tr(r), tr(r′)) ∈ (so∪wr)∗. Moreover, as r′ ∈ dep(h, t, e),
there exists a transaction t′′ ∈ T s.t. (t, t′′) ∈ (so ∪ wr)∗, (t′′, r′) ∈ wr and (tr(r′), tr(e)) ∈
(so∪wr)∗. In particular, as (tr(r), tr(r′)) ∈ (so∪wr)∗ and (tr(r′), tr(e)) ∈ (so∪wr)∗, we deduce
that (tr(r), tr(e)) ∈ (so ∪ wr)∗. Altogether, we conclude that (t, t′) ∈ (so ∪ wr)∗, (t′, r) ∈ wr
and (tr(r′), tr(e)) ∈ (so ∪ wr)∗; i.e. r ∈ dep(h, t, e). The moreover comes trivially as if r′ ̸∈ t,
r′ ̸∈ dep(h, t, r′).

Lemma 3.5.3. For every pair of distinct transactions t, t′ ∈ T , the function
minimalDependency(h, t, t′,⊥) always halts.

Proof. We reason by contrapositive, assuming that minimalDependency(h, t, t′,⊥) does not
halt. In such case, there exists an infinite chain of events en, n ∈ N such that e0 = ⊥, and
for every n ∈ N, en+1 = minor dep(h, t, en) = minor dep(h, t′, en). First, as h is finite, so
are both dep(h, t, en) and dep(h, t′, en). Also, if en ̸∈ t, by Lemma 3.5.2, dep(h, t, en+1) ⊊
dep(h, t, en) (and analogously for t′). Hence, the number of events en that are neither in t
nor in t′ is finite. Let k be the minimum integer s.t. ek ∈ t ∪ t′. Let us assume w.l.o.g. that
ek ∈ t. In such case, by Lemma 3.5.2, for every n ∈ N s.t. n ≥ k, dep(h, t, en) ⊆ dep(h, t, ek);
so ek ≤or en. However, as ek ∈ t, ek ∈ dep(h, t, en); so ek = en. In particular, thanks to
Lemma 3.5.2, we deduce that ek ∈ t′ as well. As no event belong to two transactions at
the same time, t = t′. However, this is impossible as t ̸= t′; so the initial hypothesis, that
minimalDependency(h, t, t′,⊥) does not halt, is false.

The following result is just a consequence of Lemma 3.5.3 and the definition of canon-
icalOrder.

Corollary 3.5.4. The relation ≤h is well-defined for every pair of distinct transactions.

Next, we prove in Lemma 3.5.6 that ≤h is a total order. In particular, for proving that ≤h

is transitive, we prove an auxiliary result that characterizes (so∪wr)∗-dependent transactions.

Lemma 3.5.5. Let h = (T, so,wr) be a history and let t, t′ ∈ T be a pair of transactions that
(t, t′) ∈ (so ∪ wr)∗. One of the following conditions holds:

1. t ≤or t
′, or

2. ∃t′′, t′′′ ∈ T s.t. (t, t′′) ∈ (so ∪ wr)∗, (t′′, t′′′) ∈ wr, (t′′′, t′) ∈ (so ∪ wr)∗ and t′′′ ≤or t
′.

Proof. For proving the result, let us assume that (t, t′) ∈ (so∪wr)∗ but that t′ <or t and let us
prove that condition 2 holds. For that, let us consider the sets of pairs of transactions A(t, t′)
and B(t, t′) defined as follows:

A(t, t′) := {(t′′, t′′′′) ∈ T 2 | (t, t′′) ∈ (so ∪ wr)∗ ∧ (t′′, t′′′) ∈ wr ∧ (t′′′, t′) ∈ (so ∪ wr)∗} (3.2)
B(t, t′) := {(t′′, t′′′′) ∈ A(t, t′) | t′′′ ≤or t

′} (3.3)
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As t′ <or t and or respects so, t ̸= t′ and (t, t′) ̸∈ so. Hence, A(t, t′) ̸= ∅. To conclude 2,
it suffices to prove that B(t, t′) ̸= ∅. By contrapositive, let us assume that B(t, t′) = ∅. As
A(t, t′) ̸= ∅, let (t′′, t′′′) ∈ A(t, t′) be a pair of transactions s.t. t′′′ is (so ∪ wr)∗-maximal. As
t′ has finitely many (so∪wr)∗-predecessors, and for any pair of transactions (t1, t2) ∈ A(t, t′),
t2 is a (so ∪ wr)∗-predecessors of t′; such transaction t′′′ is well-defined. Then, as B(t, t′) = ∅,
t′ <or t

′′′. However, as or is consistent with so and (t′′′, t′) ∈ (so∪wr)∗, t′′′ ̸= t′ and (t′′′, t′) ̸∈ so.
Hence, there exists transactions s′′, s′′′ s.t. (t′′′, s′′) ∈ (so ∪ wr)∗, (s′′, s′′′) ∈ wr and (s′′′, t′) ∈
(so∪wr)∗. We observe that as (t′′, t′′′) ∈ A(t, t′), we deduce that (t, s′′) ∈ (so∪wr)∗. Therefore,
we conclude that (s′′, s′′′) ∈ A(t, t′). However, this is impossible as t′′′ is (so ∪ wr)∗-maximal
and (t′′′, s′′′) ∈ (so ∪ wr)+. Altogether, we deduce that our assumption that B(t, t′) = ∅ is
false; so B(t, t′) ̸= ∅; which concludes the result.

Lemma 3.5.6. The relation ≤h is a total order.

Proof.

• Strongly connection: Let t1, t2 ∈ T s.t. t1 ̸≤h t2. If (t2, t1) ∈ (so ∪ wr)∗, then t2 ≤h t1.
Otherwise, as t1 ̸≤h t2, then (t1, t2) ̸∈ (so∪wr)∗ and minimalDependency(h, t1, t2,⊥)
does not hold. In such case, as minimalDependency halts (Lemma 3.5.3) and
minimalDependency(h, t1, t2,⊥) does not hold, by the definition of minimalDe-
pendency, minimalDependency(h, t2, t1,⊥) holds. Altogether, we deduce that
(t1, t2) ̸∈ (so ∪ wr)∗ and minimalDependency(h, t2, t1,⊥) holds; so t2 ≤h t1.

• Reflexivity: As (t, t) ∈ (so ∪ wr)∗, t ≤h t.

• Transitivity: Let t1, t2, t3 three distinct transactions such that t1 ≤h t2 and t2 ≤h t3.
Clearly, if (t1, t3) ∈ (so∪wr)∗, then t1 ≤h t3. Otherwise, we prove that (t3, t1) ̸∈ (so∪wr)∗
and minimalDependency(h, t1, t3,⊥) holds.

For proving it, we construct an inductive sequence of events ein, n ∈ N, i ∈ {1, 2, 3} that
represent the recursive calls to minimalDependency function. We define ei0 as ⊥, and
ein+1 = min<or dep(h, ti, ein). Four cases arise depending on the relation between t1, t2
and t3:

– (t1, t2) ∈ (so ∪ wr)∗ and (t2, t3) ∈ (so ∪ wr)∗: In this case, (t1, t3) ∈ (so ∪ wr)∗;
which is impossible as (t1, t3) ̸∈ (so ∪ wr)∗. Thus, this scenario is impossible.

– (t1, t2) ̸∈ (so ∪ wr)∗ and (t2, t3) ∈ (so ∪ wr)∗: First we prove that (t3, t1) ̸∈ (so ∪
wr)∗. If (t3, t1) would be in (so ∪ wr)∗, (t2, t1) ∈ (so ∪ wr)∗; so t2 ≤h t1. However,
this is impossible as t1 ≤h t2 and ≤h is strongly connected.
Next, we prove that minimalDependency(h, t1, t3,⊥) holds. We observe that as
(t2, t3) ∈ (so ∪ wr)∗, one of the conditions 1 and 2 in Lemma 3.5.5 hold. Thus, for
every n ∈ N, then e2n ≤or e

3
n. Moreover, as (t1, t2) ̸∈ (so ∪ wr)∗ but t1 ≤h t2 holds,

minimalDependency(h, t1, t2,⊥) holds. Let thus n0 be the maximum n ∈ N s.t.
e1n = e2n. By Lemma 3.5.3, we know that n0 is well-defined. We observe that in
such case, e1n0+1 <or e

2
n0+1 ≤or e

3
n0+1. Hence, as for every n ≤ n0, e1n ≤or e

3
n and

e1n0+1 <or e
3
n0+1, we conclude that minimalDependency(h, t1, t3,⊥) holds.
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– (t1, t2) ∈ (so ∪ wr)∗ and (t2, t3) ̸∈ (so ∪ wr)∗: First we prove that (t3, t1) ̸∈ (so ∪
wr)∗. If (t3, t1) would be in (so ∪ wr)∗, (t3, t2) ∈ (so ∪ wr)∗; so t3 ≤h t2. However,
this is impossible as t2 ≤h t3 and ≤h is strongly connected.
Next, we prove that minimalDependency(h, t1, t3,⊥) holds. We observe that as
(t1, t2) ∈ (so ∪ wr)∗, one of the conditions 1 and 2 in Lemma 3.5.5 hold. Thus, for
every n ∈ N, then e1n ≤or e

2
n. Moreover, as (t2, t3) ̸∈ (so ∪ wr)∗ but t2 ≤h t3 holds,

minimalDependency(h, t2, t3,⊥) holds. Let thus n0 be the maximum n ∈ N s.t.
e2n = e3n. By Lemma 3.5.3, we know that n0 is well-defined. We observe that in
such case, e1n0+1 ≤or e

2
n0+1 <or e

3
n0+1. Hence, as for every n ≤ n0, e1n ≤or e

3
n and

e1n0+1 <or e
3
n0+1, we conclude that minimalDependency(h, t1, t3,⊥) holds.

– (t1, t2) ̸∈ (so ∪ wr)∗ and (t2, t3) ̸∈ (so ∪ wr)∗: For proving that
minimalDependency(h, t1, t3,⊥) holds, let n0 be the maximum n ∈ N s.t.
e1n = e2n = e3n. By Lemma 3.5.3, we know that n0 is well-defined. In such case, as
t1 ≤h t2 and t2 ≤h t3, we know that e1n0+1 ≤or e

2
n0+1 ≤or e

3
n0+1. Altogether, as

not all the three events are not equal, we deduce that e1n0+1 <or e
3
n0+1. Hence,

minimalDependency(h, t1, t3,⊥) holds.
For proving that (t3, t1) ̸∈ (so ∪ wr)∗, we reason by contrapositive, assuming that
(t3, t1) ∈ (so∪wr)∗ and reaching a contradiction. In such case, as e1n0+1 <or e

3
n0+1,

by the definition of dep, e1n0+1 ∈ t1. Hence, minor t1 = e1n0+1 <or e
3
n0+1 ≤or

minor t3. In particular, as or is consistent with so, we deduce that (t3, t1) ̸∈ so.
Therefore, as we assume that (t3, t1) ∈ (so ∪ wr)∗, there exists a transaction t
and an event r s.t. (t3, t) ∈ (so ∪ wr)∗, (t, r) ∈ wr and (tr(r), t1) ∈ (so ∪ wr)∗.
Hence, e1n0+1 ∈ dep(h, t3, e3n0

); so e3n0
≤ e1n0+1. However, this is impossible as

e1n0+1 <or e
3
n0+1; so (t3, t1) ∈ (so ∪ wr)∗.

• Antisymmetric Let t1, t2 s.t. t1 ≤h t2 and t2 ≤h t1. If (t1, t2) ̸∈ (so∪wr)∗, we would de-
duce that (t2, t1) ̸∈ (so∪wr)∗ and minimalDependency(h, t1, t2,⊥) returns true. Then,
as t2 ≤h t1 and (t2, t1) ̸∈ (so ∪ wr)∗, we deduce that minimalDependency(h, t2, t1,⊥)
returns true. However, this is impossible by the definition of minimalDependency; so
(t1, t2) ∈ (so ∪ wr)∗, In such case, as t2 ≤h t1, (t2, t1) ∈ (so ∪ wr)∗; so t1 = t2.

3.5.4.2 Oracle-Respectful Histories

We prove in this section that histories can be always assumed ordered without loss of gen-
erality. First, we show in Lemma 3.5.11 that on reachable histories (h,<), the order <
coincides with its canonical order. Thus, as by Lemma 3.5.6, the canonical order is defined
for any history and it coincides with the order obtained using Algorithm 1, histories can al-
ways be assumed as ordered. For proving it, we rely on the notion of oracle-respectfulness
(Definition 3.5.7), that captures a sufficient condition for an order < to mismatch the oracle
order or and correspond to the order of a reachable history. This notion allows us proving in
Lemma 3.5.12 that the canonical order on any total history is oracle-respectful; implying that
total and reachable histories behave “similarly”. The latter property hints that total histories
are reachable, i.e. that Algorithm 1 is complete.
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Definition 3.5.7. An ordered history (h,≤) is oracle-respectful if

1. h has at most one pending transaction log, the last one w.r.t. ≤, and

2. for every pair of events e ∈ P, e′ ∈ h s.t. e ≤or e
′,

(a) e ≤ e′, or
(b) ∃e′′, t′′ ∈ h s.t. e′′ ≤or e, (tr(e′), t′′) ∈ (so ∪ wr)∗, (t′′, e′′) ∈ wr, e′′ ≤ e and

swapped(h<, e′′) holds;

where if e ̸∈ h we state e′ ≤ e always holds, but e ≤ e′ never does.

We denote it by Ror(h,≤).
For reasoning about reachable histories, we use the notion of computable path. A com-

putable path p = {((hn, <n), localsn)}n is a sequence of pairs of histories and local variables
s.t. (1) every history is reachable, (2) h0 = (init, ∅, ∅) and (3) hn (respectively localsn) cor-
responds to the ordered history (resp. the local variables) appearing in n-th recursive call to
explore. We denote by len(p) to the number of histories p has.

Lemma 3.5.8. Let h< = ((T, so,wr), <) be a reachable history. For every pair of transactions
t, t′, (1) t, t′ are totally ordered by < and (2) if (t, t′) ∈ (so ∪ wr)∗, then t ≤ t′.
Proof. As h< is reachable, there exists a computable path p whose last transaction is h<.
We prove the result by induction on the histories in such path. The base case, h0, trivially
holds as h0 only contains one transaction. Let us thus assume that the result holds for
the history hn, and let us prove it for history hn+1. Let j, e, γ = Next(P, hn, localsn). On
one hand, if hn+1 = hn ⊕j e or hn+1 = hn ⊕ e ⊕ wr(t, e), clearly conditions (1) and (2)
hold; where t ∈ ValidWrites(hn, e). On the other hand, if hn+1 is the history returned
by Swap(hn ⊕ je, r, t, locals′n); for some (r, t) ∈ ComputeReorderings(hn) and locals′n =
localsn[e 7→ γ], the result also holds by ComputeReorderings and Swap’s definitions.

In general, arbitrary histories are not necessarily oracle-respectful. One instance of oracle-
respectful histories are reachable histories.

Lemma 3.5.9. Every reachable history (h,≤h) is oracle-respectful.

Proof. As h< is reachable, there exists a computable path p whose last transaction is h<. We
prove the result by induction on the histories in such path. The base case, when the history is
h0, is immediate as h0 only contains one transaction, init. Let us thus assume that the result
holds for the pair (hn, localn), and let us prove it for the pair (hn+1, localsn+1). We denote
by ≤n and ≤n+1 to the order of hn and hn+1 resp. By hypothesis, hn is oracle-respectful. We
distinguish several cases, depending on the event a s.t. (j, a, γ) = next(P, hn, localsn).

• a is a begin event: In this case, the last event in <n+1 is a, and tr(a) is not complete.
Hence, ComputeReorderings(hn+1) = ∅; so hn+1 = hn ⊕j a. By the choice of next
function (see Section 3.5.1), we deduce that hn has no pending transactions, so 1 holds.
For showing 2, let e ∈ P, e′ ∈ hn+1 s.t. e <or e

′. As a = minor P \ hn there is no event
e ∈ P \ hn s.t. e ≤or. Hence, e′ ̸= a or e ∈ hn. In such case, as ≤n+1 is an extension of
≤n and Property 2 holds for hn; it also holds for hn+1.
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• a is a read event: Similarly to the previous case, the last event in <n+1 is a, and tr(a)
is not complete. Hence, ComputeReorderings(hn+1) = ∅; so hn+1 = hn⊕j a. Then,
as ≤n+1 is an extension of ≤n and hn only has one pending transaction, by our choice
of next function (see Section 3.5.1), a belongs to the only pending transaction. This
shows that 1 holds.

For proving that 2 holds for hn+1, let e ∈ P, e′ ∈ hn+1 s.t. e <or e
′. As Property 2

holds in hn and ≤n+1 coincides with ≤n on events in hn, if e′ ̸= a or e ∈ hn the result
immediately holds. Otherwise, if e′ = a and e ̸∈ hn, let us consider b the begin event in
tr(a). By the definition of Next, b ∈ hn. Thus, as Property 2 holds in hn, we deduce
that e ̸≤n b; where b is the begin event in tr(a). Hence, condition 2b holds in hn; so it
holds in hn+1.

• a is not a begin nor a read event, and hn+1 = hn ⊕j a: In this case, as ≤n+1 is an ex-
tension of ≤n and hn only has one pending transaction, by our choice of next function
(see Section 3.5.1), a belongs to the only pending transaction. This shows that 1 holds.

For proving that 2 holds for hn+1, let e ∈ P, e′ ∈ hn+1 s.t. e <or e
′. As Property 2

holds in hn and ≤n+1 coincides with ≤n on events in hn, if e′ ̸= a or e ∈ hn the result
immediately holds. Otherwise, if e′ = a and e ̸∈ hn, let us consider b the begin event in
tr(a). By the definition of Next, b ∈ hn. Thus, as Property 2 holds in hn, we deduce
that e ̸≤n b; where b is the begin event in tr(a). Hence, condition 2b holds in hn for
events b and e; so it also holds in hn+1 for events b and e.

• a is not a begin nor a read event, and hn+1 ̸= hn ⊕j a: In this case, we observe that
(hn+1, localsh) = Swap((hn ⊕j a,≤n), r, t, locals

′
n); where r, t are a read event and a

transaction s.t. (r, t) ∈ ComputeReorderings(hn) and locals′n = localsn[e 7→ γ].
Hence, ComputeReorderings(hn+1) ̸= ∅; so a = commit. Thus, hn ⊕j a has no
pending transactions. By the definition of Swap (see Section 3.5.2), we conclude that
hn+1 contains exactly one pending transaction, and it is the last one w.r.t. ≤n+1; so 1
holds.

For proving that 2 holds in hn+1, let e ∈ P, e′ ∈ hn+1 be two events s.t. e ≤or e
′. For

clarity, let so and wr (respectively so and wr) be the session order and write-read of
hn+1 (resp. hn). Three sub-cases arise:

– e ≤n+1 e
′: In this case, Property 2a immediately holds in hn+1.

– e′ <n+1 e and e′ <n e: In this case, as e′ <n e, we deduce that e′ ∈ hn and e′ ∈
hn+1. As Property 2 holds in hn but e′ ≤n e, Property 2b holds in hn for events e
and e′. Let (e′′, t′′) be an event and a transaction such property in hn for events
e and e′. As swapped(hn, e′′) holds, by Optimality’s definition, e′′ ∈ hn+1

and e′′ ̸= r. Hence, as e′′ ̸= r, we deduce that (tr(e′), t) ∈ (so ∪ wr)∗, (t, e′′) ∈
wr and e′′ ≤n+1 e. Moreover, as wr−1(e′′) ∈ hn, by Optimality’s definition,
we deduce that it is different from r and it also belongs to hn+1. To sum up,
swapped(hn+1, e

′′) holds as well; so Property 2 holds in hn+1.
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– e′ <n+1 e and e ≤n e
′: In this case, we show that r and t are the event and trans-

action respectively for which Property 2b holds in hn+1 for events e and e′.

∗ r ≤n+1 e: As e′ <n+1 e and e ≤n e
′, we deduce that both e, e′ ∈ hn. Moreover,

by the construction of hn+1 using Swap function, we deduce that either e ̸∈
hn+1 or e ∈ tr(r); so r ≤n+1 e.

∗ (tr(e′), t) ∈ (so ∪ wr)∗: We show that r <n e′. On one hand, if e ̸∈ tr(r),
e ̸∈ hn. In such case, as e′ <n+1 e and e ≤n e′, we conclude that r <n e;
so r <n e ≤n e

′. On the other hand, if e ∈ tr(r), as e ≤n e
′ and e′ <n+1 e,

we deduce by Lemma 3.5.8 that e′ ̸∈ tr(r). In particular, we obtain r <n e
′.

Then, as regardless of whether e ∈ tr(r) or not, r ≤n e
′, and as e′ ∈ hn+1, we

conclude that (tr(e′), t) ∈ (so′ ∪ wr′)∗.
∗ (t, r) ∈ wr: This is immediate by the definition of Swap.
∗ r ≤or e: If e ∈ tr(r), the result immediately holds. Otherwise, if e ̸∈ tr(r), we

prove the result by by contrapositive, assuming that r >or e and reaching a
contradiction. First, as e′ <n+1 e and e ≤n e

′, we deduce that e ̸∈ hn+1 but
e ∈ hn. By Swap’s definition, we observe that r <n e and (tr(e), t) ̸∈ (so∪wr)∗.
In such case, as hn is oracle-respectful, we deduce that Property 2b holds in
hn for events r and e. Let e′′ and t′′ be an event and a transaction resp.
witnessing it. In such case, (tr(r), t) ∈ (so′ ∪ wr′)∗, (t, e′′) ∈ wr′, e′′ ≤n e and
swapped((hn,≤n), e

′′). As (tr(r), tr(e′′)) ∈ (so′ ∪ wr′)∗, by Lemma 3.5.8, we
deduce that r ≤n e′′. Hence, as r ≤n e′′ and swapped((hn,≤n), e

′′) holds,
by Optimality and Swap’s definition, (tr(e′′), t) ∈ (so′ ∪ wr′)∗. Altogether,
we deduce that (tr(r), t) ∈ (so′ ∪ wr′)∗. However, this contradicts that (r, t) ∈
ComputeReorderings(hn). In conclusion, the initial hypothesis, r >or e, is
false; so r ≤or e.

∗ swapped(hn+1, r) holds: Thanks to the Swap’s definition, we know that
t <n+1 r and that r is the only read event in tr(r) reading from t. More-
over, as r is the last event w.r.t. <n+1 and t is the second to last transaction
in hn+1 w.r.t. <n+1, for proving that swapped(hn+1, r) holds it suffices to
show that t >or r. We reason by contrapositive, assuming that t ≤or r and
reaching a contradiction.
Let b be the begin event in t. As or respects the program order, b ≤or r. In
such case, as hn is oracle-respectful and r <n b, we deduce that Property 2b
holds in hn for r and b. Let e′′, t′′ be an event and a transaction resp. satisfying
the Property in hn. In such case, (tr(r), t′′) ∈ (so′∪wr′)∗, (t′′, e′′) ∈ wr′, e′′ ≤n b
and swapped((hn, <n), e

′′) holds. By Lemma 3.5.8, this implies that r <n e
′′.

Hence, by the definition of Optimality, as swapped((hn, <n), e
′′) holds, we

deduce that (tr(e′′), t) ∈ (so′∪wr′)∗. Therefore, (tr(r), t) ∈ (so′∪wr′). However,
this is impossible as (r, t) ∈ ComputeReorderings((hn, <n)); so the initial
hypothesis, that t ≤or r is false; so r <or t.
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The following result is just an observation obtained during Lemma 3.5.9.

Corollary 3.5.10. Let h be a reachable history, p a computable path leading to h and r be
an event in h. The predicate swapped(h, r) holds iff there exists a pair of histories and local
mappings (h1, locals1), (h2, locals2) in p s.t. (h2, locals2) = swap(h1 ⊕j e, r, t, locals

′); where
(j, e, γ) = Next(P, h1, locals1) and locals′ = locals1[e 7→ γ].

Lemma 3.5.11. For any reachable history h<, ≤h≡≤h.

Proof. As h< is reachable, there exists a computable path p whose last transaction is h<. We
prove the result by induction on the histories in such path. The base case, when the history is
h0, is immediate as h0 only contains one transaction, init. Let us thus assume that the result
holds for the pair (hn, localn), and let us prove it for the pair (hn+1, localsn+1). We denote
by ≤n and ≤n+1 to the order of hn and hn+1 respectively. Also, we denote by ≤n and ≤n+1

to the canonical order over hn and hn+1 respectively. By hypothesis, hn is oracle-respectful.
We distinguish several cases, depending on the relation between hn+1 and the event e s.t.
(j, e, γ) = next(P, hn, localsn). For clarity, let so and wr (respectively so and wr) be the
session order and write-read of hn+1 (resp. hn).

• hn+1 = hn ⊕j e and e = begin: In this case, as e = minor P \ hn, (1) tr(e) is the last
transaction in hn+1 w.r.t. ≤n+1 and (2) the relative order between other transactions
in hn coincide w.r.t. ≤n. Also, as tr(e) is (so ∪ wr)∗-maximal and e = minor P \ hn, (1)
tr(e) is the last transaction in hn+1 w.r.t. ≤n+1 and (2) the relative order between other
transactions in hn coincide w.r.t. ≤n. Altogether, we conclude that ≤n+1=≤n+1.

• hn+1 = hn ⊕j e and e ̸= begin: Let b be the begin event in tr(e). Then, as begin <or e

and hn+1 = hn ⊕j e, ≤n+1=≤n. By induction hypothesis, ≤n=≤n. Moreover, by
Lemma 3.5.9, as e ̸= begin, ≤n=≤n+1. Altogether, ≤n+1=≤n+1.

• hn+1 = hn ⊕j e⊕ wr(t, e); for some t ∈ ValidWrites(hn): This case is identical to the
previous one.

• hn+1 ̸= hn ⊕j e and hn+1 ̸= hn ⊕j e⊕ wr(t, e); for every t ∈ ValidWrites(hn) : In
this case, (hn+1, localsn+1) = Swap(hn⊕je, r, t, locals

′
n); where r, t are a read event and a

transaction s.t. (r, t) ∈ ComputeReorderings(hn) and locals′n = localsn[e 7→ γ].First,
we analyze ≤n+1 and ≤n+1 for transactions in hn+1 different from tr(r). By Swap’s
definition, for every transaction t′ ∈ hn+1 s.t. t′ ̸= tr(r), their (so∪wr)∗-predecessors co-
incide with its (so′∪wr′)∗-predecessors. Hence, for every event e′, minor dep(hn, t′, e′) =
minor dep(hn+1, t

′, e′). Therefore, for every pair of distinct transactions t1, t2 ∈ hn+1

different from tr(r), t1 ≤n t2 iff t1 ≤n+1 t2. Also, by Swap’s definition, the only trans-
action where ≤n and ≤n+1 do not coincide is tr(r). Applying the inductive hypothesis
on hn, we deduce that for every pair of distinct transactions t1, t2 ∈ hn+1 different from
tr(r), we deduce that t1 ≤n+1 t2 iff t1 ≤n+1 t2.

Next, we analyze ≤n+1 and ≤n+1 for pairs of distinct transactions in hn+1 where
one of them is tr(r). By Swap’s definition, for every transaction t′ ∈ hn+1 differ-
ent from tr(r), t′ ≤n+1 tr(r). We show that t′ ≤n+1 tr(r). Clearly, if (t′, tr(r)) ∈
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(so ∪ wr)∗, t′ ≤n+1 tr(r). Moreover, if (t′, tr(r)) ̸∈ (so ∪ wr)∗, as by Swap’s defi-
nition, tr(r) is (so ∪ wr)∗-maximal, (tr(r), t′) ̸∈ (so ∪ wr)∗. We show that in such
case, minimalDependency(hn+1, t

′, tr(r),⊥) holds; so t′ ≤n+1 tr(r) as well. Let
a = minor dep(hn+1, tr(r),⊥) and a′ = minor dep(hn+1, t

′,⊥). We note that as tr(r)
is (so ∪ wr)∗-maximal, a ∈ tr(r). Let also b be the begin event of t′. Then, on one
hand, if b <or a, a′ <or a; so minimalDependency(hn+1, t

′, tr(r),⊥) holds. On the
other hand, if a ≤or b, as hn+1 is oracle-respectful (Lemma 3.5.9) and t′ ≤n+1 tr(r),
Property 2b holds in hn+1 for events a and b. Then, let e′′ and t′′ be an event and
transaction respectively witnessing it. In such case, e′′ ≤or a and e′′ ∈ dep(hn+1, t

′,⊥);
so a′ ≤or a. Finally, as a′ ̸∈ tr(r), a′ ̸= a; so we conclude that a <or a and that
minimalDependency(hn+1, t

′, tr(r),⊥) holds.

We deduce from Lemma 3.5.11 that regardless of the computable path that leads to a
history, the final order between events will be the same; and it coincides with the canonical
order. Hence, we can assume w.l.o.g. that every history is ordered by simply appending it its
canonical order. The last result, Corollary 3.5.10 states that swapped captures exactly if an
event has been swapped via a Swap condition.

Another instance of oracle-respectful histories are total histories ordered with the canonical
order.

Lemma 3.5.12. For any total history h, the ordered history (h,≤h) is oracle-respectful.

Proof. Let h = (T, so,wr) be a total history. First as h is total, Property 1 holds. Next, for
showing that Property 2 holds, let t1, t2 be a pair of distinct transactions s.t. t1 ≤or t2 but
t2 ≤h t1, and let us prove that Property 2b holds.

On one hand, if (t2, t1) ∈ (so∪wr)∗, by Lemma 3.5.5, we deduce that there exists an event
r and a transaction t′ s.t. (t2, t

′) ∈ (so ∪ wr)∗, (t′, r) ∈ wr, (tr(r), t1) ∈ (so ∪ wr)∗, r ≤or t2
and r ≤or t

′. W.l.o.g. we can assume that r is minimal event w.r.t. ≤h. We observe that
as (t′, r) ∈ wr, t′ ≤h r. Then, thanks to the minimality of r w.r.t. ≤h, we conclude that
swapped(h, r) holds; so Property 2b holds.

On the other hand, if (t2, t1) ̸∈ (so ∪ ∪wr)∗, as t2 ≤h t1, (t1, t2) ̸∈ (so ∪ wr)∗ and
minimalDependency(h, t2, t1,⊥) holds. We define two sequence of events e1i and e2i and
e3i representing the recursive calls to dep of t1 and t2. For each j ∈ {1, 2, 3}, we define ej0 = ⊥
and for each i ∈ N, eji+1 = dep(h, tj , e

j
i ). Let n0 be the maximum index s.t. e1i = e2i . As

t1 ̸= t2, by Lemma 3.5.2, n0 is well-defined. Moreover, as t2 ≤h t1, there exists a transaction
t′ s.t. (t2, t

′) ∈ (so∪wr)∗, (t′, e2n0+1) ∈ wr and e2n0+1 ≤or e
1
n0+1. By the definition of e1n0+1, we

deduce that e2n0+1 ≤or t1. We show that e2n0+1 is exactly the searched event.
Clearly, by the definition dep, there exists a transaction t′′ s.t. (t2, t

′′) ∈ (so ∪ wr)∗ and
(t′′, e2n0+1) ∈ wr. Also, as e2n0+1 ≤or e

1
n0+1, we deduce that e2n0+1 ≤or t1. Moreover, by the

definition of e2n0+1, we deduce that for every i, 0 ≤ i ≤ n0, there exists a transaction ti s.t.
(e2n0+1, ti) ∈ (so ∪ wr)∗ and (ti, e

2
i ) ∈ wr. Therefore, minimalDependency(h, tr(e2n0

), t1,⊥)
holds; and hence, e ≤h t1. Finally, e2n0+1’s minimality w.r.t. or as well as the fact that
t1 ≤or t2 ensures that swapped(h, e2n0+1) holds.
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3.5.4.3 Previous of a History

In this section, we construct the previous of a history, which in the case of reachable histories,
it corresponds to the immediate predecessor in a computable path. This function shows that
Swap is bijective; so computable paths are always unique.

Algorithm 4 Previous of a history

1: procedure prev(P, h = (T, so,wr))
2: a← last(h)
3: if h = (init, ∅, ∅) then return h
4: else if ¬swapped(h, a) then return h \ a
5: else
6: let D = {e | e ∈ P \ (h \ {a}) ∧ e <or wr

−1(a)}
7: return maxCompletion(h \ {a, tr(last(wr−1(a)))}, D)

8: procedure maxCompletion(h = (T, so,wr), D)
9: if D ̸= ∅ then

10: e← min<or D
11: if op(e) ̸= read then return maxCompletion(h⊕ e,D \ {e})
12: else
13: let t s.t. readLatestι(h⊕ e⊕ wr(t, e), e,) holds
14: return maxCompletion(h⊕ e⊕ wr(t, e), D \ {e})
15: elsereturn h

First, we show that oracle-respectfulness is preserved via prev.

Lemma 3.5.13. For every oracle-respectful history h, prev(h) is also oracle-respectful.

Proof. Let h = (T, so,wr) be a history and v = prev(h) be its previous. We denote by ≤h and
≤v to their respectively canonical order; and we denote by T ′, so′ and wr′ to the transactions,
session order and write-read relation of v respectively. Also, we denote by a to the last event
in h. Three cases arise depending on which condition among 3, 4 and 7 holds.

• h = (init, ∅, ∅): In this case, v = h and the result immediately holds.

• h ̸= (init, ∅, ∅) and ¬swapped(h, a) holds: In this case, v = h \ a. As h is oracle-
respectful, Property 1 holds in v. Also, as ≤v⊆≤h and a is not swapped, Property 2
holds in v; so v is oracle-respectful.

• h ̸= (init, ∅, ∅) and swapped(h, a) holds: In this case, the history v is defined as in
line 7 of Section 3.5.4.3. Note that a ̸= commit, abort, tr(a) must be the pending trans-
action of h. Moreover, as a is swapped, tr(a) ≤or wr

−1(a). Hence, tr(a) is not pending
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in v. By construction of v, v contains exactly one pending transaction: tr(wr−1(a)). As
last(v) = tr(wr−1(a)), we conclude that Property 1 holds.

For showing that Property 2 holds, let e ∈ P, e′ ∈ v be a pair of events s.t. e ≤or e
′

but e′ ≤v e; and let us show that Property 2b of Definition 3.5.7 holds. As e ≤or e
′

but e′ ≤v e Lemma 3.5.8, we deduce that there exists a transaction t′′ and an event
e′′ s.t. (tr(e′), t′′) ∈ (so′ ∪ wr′)∗, (t′′, e′′) ∈ wr′, t′′ ≤v e′′ and e′′ ≤or t

′′. Choosing e′′

minimal w.r.t. ≤v, allow us to conclude that e′′ ≤v e and swapped(v, e) holds: every
read event in events(h) \ {a} reads from the same transaction in h and in v. Moreover,
by the definition of readLatest, every transaction in T ′ \ (T \ tr(a)) reads from causally-
dependent transactions. Hence, the only swapped events in v are those swapped events
in h different from a. Altogether, we deduce that e′′ ≤v e and swapped(v, e) holds.

Next, we have to prove that prev is compatible with explore-ce.

Lemma 3.5.14. For every isolation level ι that is causally-extensible and every history h that
is oracle-respectful and consistent w.r.t. ι, if prev(h) is reachable, then h is also reachable.

Proof. Let us assume that h ̸= (init, ∅, ∅), as otherwise the result immediately holds, let
v = prev(h) be the previous of h and p be a computable path that leads to v. We show that
from p we reach h in one explore-ce call. For that, let a = last(h) be the last event of
h, let localsv be the local variables of v in the path p and let j, e and γ be respectively the
session index, event and the state such that (j, e, γ) = Next(P, v, localsv). Let us also denote
by so (resp. so′) and wr (resp. wro′) to the session order and write-read relations of h (resp.
of v).

On one hand, if ¬swapped(h, a) holds, by the choice of Next, e = a and j = ses(tr(a)).
We observe that if a is not a read, h = v ⊕ a; while if it is, h = v ⊕ a ⊕ wr(t, a); for some
transaction t ∈ v. Note that as h is consistent w.r.t. ι, in the latter case, t ∈ validι(h, a).
Hence, h is reachable by the computable path that, after p, contains the tuple (h, localsv[a 7→
γ]).

On the other hand, if swapped(h, a) holds, we show first that v is well-defined. For that,
it suffices to show that for every read event r ∈ events(v) \ (events(h) \ {a}), the transaction r
reads from exists (line 13). We observe that h and all its recursive calls to maxCompletion
function have at most pending transaction at a time, which is (so∪wr)∗-maximal. Therefore,
as ι is causally-extensible by hypothesis, such transaction exists. Moreover, any such read
event is not swapped in v.

Then, to show that v is reachable, we simply show that the pair (a, t) ∈
ComputeReorderings(v⊕j e); where t is the transaction s.t. (t, a) ∈ wr. As a is swapped,
a ≤or t. As (t, a) ∈ wr but a ≤or t, we deduce that they do belong to different sessions.
Moreover, by construction of v, we deduce that the event e = last(tr(wr−1(a))). Hence,
by Section 3.5.4.3, a ≤v t and (tr(a), t) ̸∈ (so′ ∪ wr′)∗. In addition, by prev’s definition,
we know that e = last(tr(wr−1(a))). Therefore, (a, t) ∈ ComputeReorderings(v ⊕j e).
In conclusion, h is reachable by the computable path that, after p, contains the tuple
(Swap(v, r, t, localsh), localsh); where localsh = localsv[a 7→ γ].
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As an observation of the proof of Lemma 3.5.14, we deduce the following result.

Corollary 3.5.15. Let ι be an isolation level, and let h be an oracle-respectful consistent w.r.t.
ι history whose previous history is reachable. If swapped(h, a) holds, then h is obtained by a
swap operation from prev(h); where a = last(h).

3.5.4.4 Completeness of Algorithm explore-ce

For concluding the completeness of algorithm explore-ce, we prove an invariant relation
between an oracle-respectful history and its previous that will allow us to deduce completeness.
The invariant intuitively says that a history (1) has more events or more swapped events than
its predecessor and (2) contains all swapped events of its predecessor. Formally, let h be a
history, v = prev(h) and a = last(h). The invariant of h and v, I(h, v), is defined as follows:

I(h, v) = (Sve = She \ {a}) ∨ (Sve = She ∧ events(v) = events(h) \ {a}) (3.4)

where She = {e ∈ events(h) | swapped(h, e)} and Sve = {e ∈ events(v) | swapped(v, e)}.

Lemma 3.5.16. Let h be a oracle-respectful history different from (init, ∅, ∅). The invariant
I(h,prev(h)) holds.

Proof. For proving the result, we simply analyze prev function. Let a be the last
event in h and let v = prev(h). If ¬swapped(h, a) holds, v = h \ a. Hence, {e ∈
events(v) | swapped(v, e)} = {e ∈ events(h) | swapped(h, e)} and events(v) = events(h)\{a}
hold. Otherwise, we observe that as h is oracle-respectful, v is oracle-respectful as well
(Lemma 3.5.13). Therefore, (1) if e ̸= a is swapped in h, it is also swapped in v and (2) if
e ∈ events(h) \ events(v), then e is not swapped (see details in Lemma 3.5.13’s proof). Hence,
{e ∈ events(v) | swapped(v, e)} = {e ∈ events(h) | swapped(h, e)} \ {a} holds. Altogether,
we conclude that I(h,prev(h)) holds.

We prove using the aforementioned invariant that after applying a finite number of times
the function prev we reach the initial history.

Lemma 3.5.17. For every oracle-respectful history h there exists some kh ∈ N such that
prevkh(h) = (init, ∅, ∅).

Proof. This result is immediate consequence of Lemma 3.5.16. Let s(h) be the number of
swapped events in h, and let us prove the lemma by induction on (s(h), events(h)). The base
case, s(h) = 0 and events(h) = 1 is trivial, as in this case h is the initial history. For the
inductive case, let us assume that for every history h such that s(h) < n or s(h) = n and
events(h) < m there exists such kh; and let us prove the result for a history h′ s.t. s(h′) = n
and events(h′) = m. Let v = prev(h′) be the previous of h′. As Lemma 3.5.16 holds, we
deduce that either s(v) < s(h′) = n or s(v) = s(v′) = n and events(v) = events(h′) − 1 <
m. Either way, by inductive hypothesis, we deduce that there exists kv s.t. prevkv(v) =
(init, ∅, ∅). Therefore, kh′ = kv + 1 satisfies that prevkh′ (h′) = (init, ∅, ∅).
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Lemma 3.5.18. Let ι be a causally-extensible isolation level. For every consistent w.r.t.
ι oracle-respectful history h exists k ∈ N and a computable path of length k, p =
{(hn, localsn)}kn=0, s.t. h0 = (init, ∅, ∅), hk = h and every history hn is consistent w.r.t.
ι.

Proof. Let k be the minimum integer such that prevk(h) = (init, ∅, ∅), which exists thanks to
Lemma 3.5.17 and let Hh = {prevk−n(h)}kn=0 be the sequence of histories. By construction,
Hh is a sequence of histories s.t. h0 = prevk(h) = (init, ∅, ∅), hk = prev0(h) = h. Also,
as h is oracle-respectful, by Lemma 3.5.13, every history in Hh is oracle-respectful. Then, we
observe that h0 = (init, ∅, ∅) is reachable and consistent w.r.t. ι. Let locals0 be the local
state of h0. Then, by Lemma 3.5.14, we conclude that every history hn is reachable (on some
state localsn). Hence, the path p = {(hn, localsn)}kn=0 satisfies the result.

Theorem 3.5.19. Let ι be a causally-extensible isolation level. The algorithm explore-ce
is complete.

Proof. By Lemma 3.5.12, any consistent w.r.t. ι total history h is oracle-respectful. As a
consequence of Lemma 3.5.18, there exist a sequence of reachable histories which h belongs
to; so in particular, h is reachable.

3.5.4.5 Strong Optimality of Algorithm explore-ce

The proof of strong optimality relies on the notions of oracle-respectfulness (Section 3.5.4.2)
and canonical order of a history (Section 3.5.4.1). As explore-ce does not engage in fruitless
explorations, it suffices to prove optimality. In particular, we prove that the computable path
obtained in Lemma 3.5.18 is unique.

Theorem 3.5.20. Let ι be a causally-extensible isolation level. The algorithm explore-ce
is strongly optimal.

Proof. Let us prove that for every reachable history there is only a computable path that
leads to it from the initial history. By contrapositive, let us assume that there exists a history
h = (T, so,wr) that is reached by two computable paths, p1 and p2. By Lemma 3.5.11, we
know that ≤h≡≤h. However, ≤h is an order that does not depend on the computable path
that leads to h; so neither does ≤h. Therefore, we can assume without loss of generality that
h is a history with minimal value of s(h) = |{e ∈ events(h) |swapped(h, e)}| and in case of
tie, that is minimal with respect |events(h)|.

As shown in the proof of Lemma 3.5.18, if h is reachable, then prev(h) is reachable as
well; so we can assume w.l.o.g. that the predecessor of h in p1 is h1 = prevh. We first show
that h1 = h2 and then conclude that p1 = p2; where h2 is the predecessor of h in p2. Let in
the following locals1, locals2 be the local state of h1 and h2 resp. in p1 and p2 resp., and let
a be the last event in h. On one hand, if a is not a swapped read event, by the definition of
next function h2 = h \ {a} = h1.

On the other hand, if a is swapped event and the last event in h, by Corollary 3.5.10,
we deduce that h = Swap(h1 ⊕j1 e1, a, t); where t is the transaction s.t. (t, a) ∈ wr and
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j1, e1 and γ1 are respectively the session, the event and the local state s.t. (j1, e1, γ1) =
Next(P, h1, locals1). The same observation can be done for history h2, so we deduce that
h = Swap(h2 ⊕j1 e2, a, t); where j′, e′ and γ′ are respectively the session, the event and the
local state s.t. (j2, e2, γ2) = Next(P, h2, locals2). By ComputeReorderings’s definition,
we deduce that j1 = j2 and e1 = e2. However, as they are both reachable, by Lemma 3.5.9,
they are oracle-respectful. Hence, h1 and h2 must contain the same events. Moreover, by
Optimality’s definition, we conclude that h1 and h2 not only contain the same events, but
also that their read events must read from the same transactions. Altogether, we deduce that
h1 = h2.

Finally, as by Lemma 3.5.16, I(h,prev(h)) holds, we apply the inductive hypothesis to
h1 = prev(h). As there is only one computable path leading to h1 and Next is deterministic,
we conclude that there is only one computable path leading to h.

3.6 Swapping-Based Model Checking Algorithms for Snapshot
Isolation and Serializability

For explore-ce, not engaging in fruitless explorations is a direct consequence of causal
extensibility (of the isolation level). However, isolation levels such as SI and SER are not
causally extensible (see Section 3.3.2). Therefore, whether there exists another implementa-
tion of explore that can ensure strong optimality, with soundness and completeness w.r.t. ι
for SI or SER remains open. We answer this question in the negative, and as a result, propose
an SMC algorithm that extends explore-ce by just filtering histories before outputting to
be consistent with respect to SI or SER.

Theorem 3.6.1. If ι is Snapshot Isolation or Serializability, there exists no explore algo-
rithm that is sound and complete w.r.t. ι and strongly optimal.

Proof. We consider the program in Figure 3.13a, and show that any concrete instance of the
explore function in Algorithm 1 can not be both complete w.r.t. ι and strongly optimal. This
program contains two transactions, where only the first three instructions in each transaction
are important. We show that if explore is complete w.r.t. ι, then it will necessarily be
called recursively on a history h like in Figure 3.13b which does not satisfy ι, thereby violating
strong optimality. In the history h, both Snapshot Isolation and Serializability forbid the two
reads reading initial values while the writes following them are also executed (committed). A
diagram of the proof can be seen in Figure 3.14.

Assuming that the function Next is not itself blocking (which would violate strong op-
timality), the explore will be called recursively on exactly one of the two histories in Fig-
ure 3.13c, depending on which of the two reads is returned first by Next. We will continue
our discussion with the history h1 on the top of Figure 3.13c. The other case is similar
(symmetric).

From h1, depending on order defined by Next between write(z, 1) and read(y), explore
can be called recursively either on h11 in Figure 3.13f or on h2 in Figure 3.13d. Analogously,
from h2 two alternatives arise depending on the order defined by Next between read(y) and
the rest of events in the left transaction: exploring h21 in Figure 3.13g if read(y) is added
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begin;
a = read(x);
write(z ,1);
write(y ,1);
. . .
commit

begin;
b = read(y);
write(z ,2);
write(x,2);
. . .
commit

(a) Program (2 sessions).

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx wry

(b) History h.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wry

(c) Two histories. The top
history is called h1.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx

(d) History h2.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx

(e) History h3.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx wry

(f) History h11.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx wry

(g) History h21.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx wry

(h) History h31.

init

read(x)
write(z, 1)
write(y, 1)
. . .

read(y)
write(z, 2)
write(x, 2)
. . .

wrx

wry

(i) History h32.

init

read(y)
write(z, 2)
write(x, 2)
. . .

read(x)
write(z, 1)
write(y, 1)
. . .

wry

wrx

(j) History ĥ.

Figure 3.13: A program and some partial histories. Events in grey are not yet added to the
history. For h3, h31 and h32, the number of events that follow write(y, 1) and write(x, 2) is
not important (we use black . . . to signify that).
before write(y, 1) or h3 in Figure 3.13e otherwise. Thus, from h3 two alternatives arise when
added read(y) depending on where it reads from: h31 in Figure 3.13h if it reads from init
and h32 in Figure 3.13i if it reads from the left transaction.

However, from histories h11, h21 or h31 explore will necessarily be called recursively on
a history h like in Figure 3.13b which does not satisfy ι, thereby violating strong optimality:
explore always explore branches that enlarge the current history. Thus, any explore
implementation that is strong optimal should only explore h32. In such case, by the restrictions
on the Swap function (defined in Section 3.4), any extension of h32 does not allow to explore
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the history ĥ in Figure 3.13e where read(x) reads from write(x, 2): any outcome of a re-
ordering between two contiguous subsequences α and β must be prefix of such extension when
the events in α are taken out. In particular, for any extension h′ of h32 and pair of contiguous
sequences α, β such that h′\α is a prefix of h′, if an event from the second transaction belongs
to β, read(y) must also be in β. Therefore, write(x, 2) must be in β as it is wr−1(read(y)).
Hence, read(x) must also be in β. Analogously, if read(x) belongs to β, init belongs to it.
Altogether, if β contains any element, then α must be empty; so no swaps can be produced
from h32. To conclude, in this case explore violates completeness w.r.t. ι.

∅ h1 h2 h3

h11 h21 h31 h32

h ĥ

×

Figure 3.14: Summary of all possible execution paths from explore. Black arrows represent
alternative explored options depending on Next while dashed arrows are mandatory visited
histories from such state.

Given this negative result, we define an implementation of explore for an isolation level
ι ∈ {SI, SER} that ensures optimality instead of strong optimality, along with soundness,
completeness, and polynomial space bound. Thus, let explore-ce(ι0) be an instance of
explore-ce parametrized by ι0 ∈ {RC, RA, TCC}. We define an implementation of explore
for ι, denoted by explore-ce∗(ι0, ι), which is exactly explore-ce(ι0) except that instead
of Valid(h) ::= true, it uses

Valid(h) := h satisfies ι

explore-ce∗(ι0, ι) enumerates exactly the same histories as explore-ce(ι0) except that
it outputs only histories consistent with ι. The following is a direct consequence of Theo-
rem 3.5.1.

Corollary 3.6.2. For any isolation levels ι0 and ι such that ι0 is prefix-closed and causally
extensible, and ι0 is weaker than ι, explore-ce∗(ι0, ι) is sound and complete w.r.t. ι, optimal,
and employs polynomial space.

3.7 Experimental Evaluation
We evaluate an implementation of explore-ce and explore-ce∗ in the context of the Java
Pathfinder (JPF) [103] model checker for Java concurrent programs. As benchmark, we use
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bounded-size client programs of a number of database-backed applications drawn from the
literature. The experiments were performed on an Apple M1 with 8 cores and 16 GB of RAM.

3.7.1 Implementation
We implemented our algorithms as an extension of the DFSearch class in JPF. For performance
reasons, we implemented an iterative version of these algorithms where roughly, inputs to
recursive calls are maintained as a collection of histories instead of relying on the call stack. For
checking consistency of a history with a given isolation level, we implemented the algorithms
proposed by [29].

Our tool takes as input a Java program and isolation levels as parameters. We assume
that the program uses a fixed API for interacting with the database, similar to a key-value
store interface. This API consists of specific methods for starting/ending a transaction, and
reading/writing a global variable. The fixed API is required for being able to maintain the
database state separately from the JVM state (the state of the Java program) and update the
current history in each database access. This relies on a mechanism for “transferring” values
read from the database state to the JVM state.

3.7.2 Benchmark
We consider a set of benchmarks inspired by real-world applications and evaluate them under
different types of client programs and isolation levels.

Shopping Cart [97] allows users to add, get and remove items from their shopping cart
and modify the quantities of the items present in the cart.

Twitter [51] allows users to follow other users, publish tweets and get their followers,
tweets and tweets published by other followers.

Courseware [87] manages the enrollment of students in courses in an institution. It allows
to open, close and delete courses, enroll students and get all enrollments. One student can
only enroll to a course if it is open and its capacity has not reached a fixed limit.

Wikipedia [51] allows users to get the content of a page (registered or not), add or remove
pages to their watching list and update pages.

TPC-C [101] models an online shopping application with five types of transactions: read-
ing the stock of a product, creating a new order, getting its status, paying it and delivering
it.

SQL tables are modeled using a “set” global variable whose content is the set of ids (primary
keys) of the rows present in the table, and a set of global variables, one variable for each row
in the table (the name of the variable is the primary key of that row). SQL statements such
as INSERT and DELETE statements are modeled as writes on that “set” variable while SQL
statements with a WHERE clause (SELECT, JOIN, UPDATE) are compiled to a read of the
table’s set variable followed by reads or writes of variables that represent rows in the table
(similarly to [30]).

3.7.3 Experimental Results
We designed three experiments where we compare the performance of a baseline model check-
ing algorithm, explore-ce and explore-ce∗ for different (combinations of) isolation levels,
and we explore the scalability of explore-ce when increasing the number of sessions and
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transactions per session, respectively. For each experiment we report running time, memory
consumption, and the number of end states, i.e., histories of complete executions and in the
case of explore-ce∗, before applying the Valid filter. As the number of end states for a
program on a certain isolation level increases, the running time of our algorithms naturally
increases as well.

The first experiment compares the performance of our algorithms for different combina-
tions of isolation levels and a baseline model checking algorithm that performs no partial order
reduction. We consider as benchmark five (independent) client programs5 for each application
described above (25 in total), each program with 3 sessions and 3 transactions per session.
Running time, memory consumption, and number of end states are reported in Fig. 3.15 as
cactus plots [35].
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Figure 3.15: Cactus plots comparing different algorithms in terms of time, memory, and end
states. For readability, we use TCC to denote explore-ce under TCC6, I1 + I2 stands for
explore-ce∗(I1, I2), and true is the trivial isolation level where every history is consis-
tent. Differences between TCC, TCC + SI and TCC + SER are very small and their graphics
overlap. Moreover, DFS(TCC) denotes a standard DFS traversal of the semantics defined in
Section 3.2.2. These plots exclude benchmarks that timeout (30 mins): 3 benchmarks for TCC,
⟨SI, TCC⟩ and ⟨SER, TCC⟩ and 6, 17, 20 and 20 benchmarks timeout for ⟨RA, TCC⟩, ⟨RC, TCC⟩,
⟨true, TCC⟩ and DFS(TCC) respectively.

To justify the benefits of partial order reduction, we implement a baseline model checking
algorithm DFS(TCC) that performs a standard DFS traversal of the execution tree w.r.t. the
formal semantics defined in Section 3.2.2 for TCC (for fairness, we restrict interleavings so
at most one transaction is pending at a time). This baseline algorithm may explore the
same history multiple times since it includes no partial order reduction mechanism. In terms
of time, DFS(TCC) behaves poorly: it timeouts for 20 out of the 25 programs and it is
less efficient even when it terminates. We consider a timeout of 30 mins. In comparison
the strongly optimal algorithm explore-ce(TCC) (under TCC) finishes in 3′26′′ seconds in
average (counting timeouts). DFS(TCC) is similiar to explore-ce(TCC) in terms of memory
consumption. The memory consumption of DFS(TCC) is 381MB in average, compared to

5For an application that defines a number of transactions, a client program consists of a number of sessions,
each session containing a sequence of transactions defined by the application.

51



Chapter 3. Dynamic Partial Order Reduction for Checking Correctness against Transaction
Isolation Levels

1 2 3 4 5
Number of sessions

0

4

8

12

16

20

24

28

T
im

e
(m

in
s)

0

2

4

6

8

10

12

14

M
em

or
y
(G

B
)

Avg. time

Avg. memory

(a) Increasing sessions.

1 2 3 4 5
Number of transactions per session

0

4

8

12

16

20

24

28

T
im

e
(m

in
s)

0

2

4

6

8

10

12

14

M
em

or
y
(G

B
)

Avg. time

Avg. memory

(b) Increasing transactions per session.

Figure 3.16: Evaluating the scalability of explore-ce(TCC) for TPC-C and Wikipedia client
programs when increasing their size. These plots include benchmarks that timeout (30 mins):
4, 9 and 10 for 3, 4 and 5 sessions respectively in Figure 3.16a, and 5, 8 and 10 for 3, 4 and
5 transactions per sessions respectively in Figure 3.16b.

508MB for explore-ce(TCC) (JPF forces a minimum consumption of 256MB).
To show the benefits of strong optimality, we compare explore-ce(TCC) which is strongly

optimal with “plain” optimal algorithms explore-ce∗(ι0, TCC) for different levels ι0. As shown
in Figure 3.15a, explore-ce(TCC) is more efficient time-wise than every “plain” optimal algo-
rithm, and the difference in performance grows as ι0 becomes weaker. In the limit, when ι0 is
the trivial isolation level true where every history is consistent, explore-ce∗(true, TCC)
timeouts for 20 out of the 25 programs. The average speedup (average of individual
speedups) of explore-ce(TCC) w.r.t. explore-ce∗(RA, TCC), explore-ce∗(RC, TCC) and
explore-ce∗(true, TCC) is 3, 18 and 15 respectively (we exclude timeout cases when com-
puting speedups). All algorithms consume around 500MB of memory in average.

For the SI and SER isolation levels that admit no strongly optimal explore algorithm,
we observe that the overhead of explore-ce∗(TCC, SI) or explore-ce∗(TCC, SER) relative to
explore-ce(TCC) is negligible (the corresponding lines in Figure 3.15 are essentially overlap-
ping). This is due to the fact that the consistency checking algorithms of [29] are polynomial
time when the number of sessions is fixed, which makes them fast at least on histories with
few sessions.

In our second experiment, we investigate the scalability of explore-ce when increasing
the number of sessions. For each i ∈ [1, 5], we consider 5 (independent) client programs for
TPC-C and 5 for Wikipedia(10 in total) with ι sessions, each session containing 3 transactions.
We start with 10 programs with 5 sessions, and remove sessions one by one to obtain programs
with fewer sessions. We take TCC as isolation level. The plot in Figure 3.16a shows average
running time and memory consumption for each number i ∈ [1, 5] of sessions. As expected,
increasing the number of sessions is a bottleneck running time wise because the number of
histories increases significantly. However, memory consumption does not grow with the same
trend, cf. the polynomial space bound.

Finally, we evaluate the scalability of explore-ce(TCC) when increasing the number of
transactions per session. We consider 5 (independent) TPC-C client programs and 5 (inde-

6In the legend, CC is to be interpreted as TCC.
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pendent) Wikipedia programs with 3 sessions and ι transactions per session, for each i ∈ [1, 5].
Figure 3.16b shows average running time and memory consumption for each number i ∈ [1, 5]
of transactions per session. Increasing the number of transactions per session is a bottleneck
for the same reasons.

3.8 Related Work
Checking Correctness of Database-Backed Applications. One line of work is concerned
with the logical formalization of isolation levels [105, 10, 27, 45, 29]. Our work relies on the
axiomatic definitions of isolation levels introduced by [29], which have also investigated the
problem of checking whether a given history satisfies a certain isolation level. Our SMC
algorithms rely on these algorithms to check consistency of a history with a given isolation
level.

Another line of work focuses on the problem of finding “anomalies”: behaviors that are
not possible under serializability. This is typically done via a static analysis of the application
code that builds a static dependency graph that over-approximates the data dependencies in
all possible executions of the application [44, 28, 53, 68, 104, 56]. Anomalies with respect
to a given isolation level then correspond to a particular class of cycles in this graph. Static
dependency graphs turn out to be highly imprecise in representing feasible executions, leading
to false positives. Another source of false positives is that an anomaly might not be a bug
because the application may already be designed to handle the non-serializable behavior
[39, 56]. Recent work has tried to address these issues by using more precise logical encodings
of the application [38, 39], or by using user-guided heuristics [56]. Another approach consists of
modeling the application logic and the isolation level in first-order logic and relying on SMT
solvers to search for anomalies [69, 86, 89], or defining specialized reductions to assertion
checking [25, 24]. Our approach, based on SMC, does not generate false positives because
we systematically enumerate only valid executions of a program which allows to check for
user-defined assertions.

Several works have looked at the problem of reasoning about the correctness of applications
executing under weak isolation and introducing additional synchronization when necessary [23,
64, 87, 77]. These are based on static analysis or logical proof arguments. The issue of repairing
applications is orthogonal to our work.

MonkeyDB [30] is a mock storage system for testing storage-backed applications. While
being able to scale to larger code, it has the inherent incompleteness of testing. As opposed
to MonkeyDB, our algorithms perform a systematic and complete exploration of executions
and can establish correctness at least in some bounded context, and they avoid redundancy,
enumerating equivalent executions multiple times. Such guarantees are beyond the scope of
MonkeyDB.
Dynamic Partial Order Reduction. [6] introduced the concept of source sets which pro-
vided the first strongly optimal DPOR algorithm for Mazurkiewicz trace equivalence. Other
works study DPOR techniques for coarser equivalence relations, e.g., [8, 11, 17, 46, 47]. In all
cases, the space complexity is exponential when strong optimality is ensured.

Other works focus on extending DPOR to weak memory models either by targeting a
specific memory model [4, 5, 7, 88] or by being parametric with respect to an axiomatically-
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defined memory model [72, 71, 73]. Some of these works can deal with the coarser reads-from
equivalence, e.g., [7, 72, 71, 73]. Our algorithms build on the work of Kokologiannakis et al.
[73] which for the first time, proposes a DPOR algorithm which is both strongly optimal and
polynomial space. The definitions of database isolation levels are quite different with respect
to weak memory models, which makes these previous works not extensible in a direct manner.
These definitions include a semantics for transactions which are collections of reads and writes,
and this poses new difficult challenges. For instance, reasoning about the completeness and
the (strong) optimality of existing DPOR algorithms for shared-memory is agnostic to the
scheduler (Next function) while the strong optimality of our explore-ce algorithm relies on
the scheduler keeping at most one transaction pending at a time. In addition, unlike TruSt,
explore-ce ensures that no swapped events can be swapped again and that the history order
< is an extension of so ∪ wr. This makes our completeness and optimality proofs radically
different. Moreover, even for transactional programs with one access per transaction, where
SER and SC are equivalent, TruSt under SC and explore-ce∗(ι0, SER) do not coincide, for
any ι0 ∈ {RC, RA, TCC}. In this case, TruSt enumerates only consistent histories w.r.t. SC
at the cost of solving an NP-complete problem at each step while the explore-ce∗ step
cost is polynomial time at the price of not being strongly-optimal. Furthermore, we identify
isolation levels (SI and SER) for which it is impossible to ensure both strong optimality and
polynomial space bounds with a swapping-based algorithm, a type of question that has not
been investigated in previous work.

3.9 Conclusions
We presented efficient SMC algorithms based on DPOR for transactional programs running
under standard isolation levels. These algorithms are instances of a generic schema, called
swapping-based algorithms, which is parametrized by an isolation level. Our algorithms are
sound and complete, and polynomial space. Additionally, we identified a class of isolation
levels, including RC, RA, and TCC, for which our algorithms are strongly optimal, and we showed
that swapping-based algorithms cannot be strongly optimal for stronger levels SI and SER (but
just optimal). For the isolation levels we considered, there is an intriguing coincidence between
the existence of a strongly optimal swapping-based algorithm and the complexity of checking
if a given history is consistent with that level. Indeed, checking consistency is polynomial time
for RC, RA, and TCC, and NP-complete for SI and SER. Investigating further the relationship
between strong optimality and polynomial-time consistency checks is an interesting direction
for future work.
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4 On the Complexity of Testing
SQL Transaction Isolation

4.1 Introduction
In this chapter, we focus on testing the isolation level implementations in databases, and more
precisely, on the problem of checking whether a given execution adheres to the prescribed
isolation level semantics.

As a first contribution, we introduce a formal axiomatic semantics for executions with SQL-
like transactions with mixed isolation levels. We adapt the notion of history from Chapter 2
to this scenario. Dealing with SQL queries is more challenging than classic reads and writes
of a static set of keys (as assumed in previous formalizations [45, 29]). SQL insert and delete
queries change the set of locations at runtime and the set of locations returned by an SQL
query depends on their values (the values are restricted to satisfy WHERE clauses).

We consider two classes of histories depending on the “completeness” of the write-read
relation. To define a formal semantics of isolation levels, we need a complete write-read
relation in the sense that for instance, an SQL select is associated with a write for every
possible row (identified by its primary key) in the database, even if that row is not returned
by the select because it does not satisfy the WHERE clause. Not returning a row is an observable
effect that needs to be justified by the semantics. Such full histories can not be constructed
by interacting with the database in a black-box manner (a desirable condition in testing)
when only the outputs returned by queries can be observed. Therefore, we introduce the
class of client histories where the write-read concerns only rows that are returned by a query.
The consistency of a client history is defined as the existence of an extension of the write-
read to a full history which satisfies the semantics. The semantics on full histories combines
axioms from previous work [29] in a way that is directed by SQL queries that inspect the
database and the isolation level of the transaction they belong to. This axiomatic semantics
is validated by showing that it is satisfied by a standard operational semantics inspired by
real implementations.

We study the complexity of checking if a full or client history is consistent, it satisfies the
prescribed isolation levels. This problem is more complex for client histories, which record
less dependencies and need to be extended to full ones.

For full histories, we show that the complexity of consistency checking matches previous
results in the reads and writes model when all transactions have the same isolation level [29]:
polynomial time for the so-called saturable isolation levels, and NP-complete for stronger
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levels like Snapshot Isolation or Serializability. The former is a new result that generalizes
the work of [29] and exposes the key ideas for achieving polynomial-time complexity, while
the latter is a consequence of the previous results.

We show that consistency checking becomes NP-complete for client histories even for
saturable isolation levels. It remains NP-complete regardless of the expressiveness of WHERE
clauses (for this stronger result we define another class of histories called partial-observation).
The problem is NP-complete even if we bound the number of sessions. In general, transactions
are organized in sessions [100], an abstraction of the sequence of transactions performed during
the execution of an application (the counterpart of threads in shared memory). This case is
interesting because it is polynomial-time in the read/write model [29].

As a counterpart to these negative results, we introduce an algorithm for checking con-
sistency of client histories which is exponential-time in the worst case, but polynomial time
in relevant cases. Given a client history as input, this algorithm combines an enumeration
of extensions towards a full history with a search for a total commit order that satisfies the
required axioms. The commit order represents the order in which transactions are committed
in the database and it is an essential artifact for defining isolation levels. For efficiency, the
algorithm uses a non-trivial enumeration of extensions that are not necessarily full but contain
enough information to validate consistency. The search for a commit order is a non-trivial
generalization of an algorithm by Biswas et al. [29] which concerned only serializability. This
generalization applies to all practical isolation levels and combinations thereof. We evaluate
an implementation of this algorithm on histories generated by PostgreSQL with a number of
applications from BenchBase [51], e.g., the TPC-C model of a store and a model of Twitter.
This evaluation shows that the algorithm is quite efficient in practice and scales well to typical
workloads used in testing databases.

The rest of the chapter is structured as follows:

§ 4.2 presents the notions of full and client histories.

§ 4.3 introduces the SQL axiomatic semantics with mixed isolation levels and validate them
with a standard operational semantics.

§ 4.4 lists multiple results on the complexity of checking consistency on full and client histo-
ries.

§ 4.5 presents an algorithm for effectively checking consistency of client histories that is
exponential-time in worst-case scenarios but polynomial-time on relevant cases such
as bounded conflict-free client histories.

§ 4.6 reports on an implementation and evaluation of our algorithm.

§ 4.7 concludes with a discussion of related work.

4.2 Transactional Programs with SQL-like Operations
In this section we describe the concrete program syntax employed during the rest of the
chapter.
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4.2.1 Program Syntax
Figure 4.1 lists the definition of a simple programming language that we use to represent
applications running on top of a SQL-like database using mixed isolation levels. We model
the database as a set of rows from an unbounded domain Rows. Each row is associated
to a unique (primary) key from a domain Keys, given by the function key : Rows → Keys.
Compared to Chapter 2, Keys and Rows are an alias of Objs and Vals respectively. In the
following, we call keys to objects and rows to values.

We consider client programs accessing the database from a number of parallel sessions,
each session being a sequence of transactions defined by the following grammar:

ι ∈ Iso a ∈ LVars R ∈ 2Rows p ∈ Rows→ {0, 1} U ∈ Keys→ Rows

Transaction ::= begin(ι);Body; commit

Body ::= Instr | Instr;Body

Instr ::= InstrDB | a := LExpr | if(LCond){Instr}
InstrDB ::= a := SELECT(p) | INSERT(R) | DELETE(p) | UPDATE(p, U) | abort

Figure 4.1: Program syntax of a key-value store using SQL-like semantics.

For handling mixed isolation levels, the begin instruction defines an isolation level ι for
the current transaction (see Section 2.4 for the description of the isolation levels). The body
contains standard SQL-like statements for accessing the database and standard assignments
and conditionals for local computation. As in Chapter 2, local computation uses (transaction-
)local variables from a set LVars. We use a, b, . . . to denote local variables. Expressions and
Boolean conditions over local variables are denoted with LExpr and LCond, respectively.

Concerning database accesses (sometimes called queries), we consider a simplified but
representative subset of SQL: SELECT(p) returns the set of rows satisfying the predicate p and
the result is stored in a local variable a. INSERT(R) inserts the set of rows R or updates them in
case they already exist (this corresponds to INSERT ON CONFLICT DO UPDATE in PostgreSQL),
and DELETE(p) deletes all the rows that satisfy p. Then, UPDATE(p, U) updates the rows
satisfying p with values given by the map U, i.e., every row r in the database that satisfies
p is replaced with U(key(r)), and abort aborts the current transaction. The predicate p
corresponds to a WHERE clause in standard SQL.

For an event e of type SELECT, DELETE, or UPDATE, we use WHERE(e) to denote the predicate
p and for an UPDATE event e, we use SET(e) to denote the map U.

We call read events the SELECT events that read the database to return a set of rows, and
the DELETE and UPDATE events that read the database checking satisfaction of some predicate
p. Similarly, we call write events the INSERT, DELETE and UPDATE events that modify the
database.

We consider transaction logs (t, ιt, E, pot) as in Chapter 2, with additional isolation level
identifiers, ιt ∈ Iso, representing the isolation level declared by the unique begin event in E.
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UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
so wrx1,x2

sowrx2

wrx1

Figure 4.2: An example of a history (isolation levels omitted for legibility). Arrows represent
so and wr relations. Transaction init defines the initial state: row 0 with key x1 and row
1 with key x2. Transaction t2 reads x1 and x2 from init and deletes row with key x1 (the
only row satisfying predicate λr : r ≤ 0 corresponds to key x1). Transaction t1 reads x1 from
t2 and x2 from init, and updates only row with key x2 as this is the only row satisfying
predicate λr : r ≥ 1.

4.2.2 Histories
We present the specificities of histories using SQL-like semantics. The main difference with
respect to the read-write semantics (Chapter 3) appears on the value function, as now
valuewr(w, x) returns the row with key x written by the write event w. If w is an INSERT, it
returns the inserted row with key x. If w is an UPDATE(p, U) event, it returns the value of U
on key x if w reads a value for key x that satisfies predicate p. If w is a DELETE(p), it returns
the special value †x if w reads a value for key x that satisfies p. This special value indicates
that the database does not contain a row with key x. We assume that the initial transaction
is the only transaction that may insert as value †x (indicating that initially, no row with key
x is present). In case no condition is satisfied, valuewr(w, x) returns an undefined value ⊥.
We assume that the special values †x or ⊥ do not satisfy any predicate. Formally, the value
function is described as follows:

valuewr(w, x) =


r if w = INSERT(R) ∧ r ∈ R ∧ key(r) = x
†x if w = DELETE(p) ∧ wr−1

x (w) ↓ ∧ p(valuewr(wr
−1
x (w), x)) = 1

U(x) if w = UPDATE(p, U) ∧ wr−1
x (w) ↓ ∧ p(valuewr(wr

−1
x (w), x)) = 1

⊥ otherwise

Note that the recursion in the definition of valuewr(w, x) terminates because wr is an
acyclic relation.

Figure 4.2 shows an example of a history. For the UPDATE event w in t1, valuewr(w, x1) = ⊥
because this event reads x1 from the DELETE event in t2; while valuewr(w, x2) = −2 as it reads
x2 from the INSERT event in init.

4.2.3 Classes of Histories
We define two classes of histories: (1) full histories which are required to define the semantics
of isolation levels and (2) client histories which model what is observable from interacting
with a database as a black-box.

Full histories model the fact that every read query “inspects” an entire snapshot of the
database in order to for instance, select rows satisfying some predicate. Roughly, full histories
contain a write-read dependency for every read and key.
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UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
so wrx1

sowrx2

(a) Client history.

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
wrx1 so wrx1

sowrx2

wrx2

(b) t2 observes x2 = −2.

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
wrx1 so wrx2

sowrx1 wrx2

(c) t2 observes x2 = 1.

Figure 4.3: Examples of a client history h and two possible extensions. The dashed edge
belongs only to the extensions. The first extension is not a witness of h as t1 writes −2 on x2
and WHERE(t2)(−2) = 1.

Definition 4.2.1. A full history (T, so,wr) is a history where wr−1
x (r) is defined for all x and

r, unless r reads locally.

Client histories record less write-read dependencies compared to full histories, which is
formalized by the extends relation.

Definition 4.2.2. A history h = (T, so,wr) extends another history h = (T, so,wr) if wrx ⊆
wrx. We denote it by h ⊆ h.

Definition 4.2.3. A client history h = (T, so,wr) is a history s.t. there is a full his-
tory h = (T, so,wr) with h ⊆ h, and s.t for every x, if (w, r) ∈ wrx \ wrx, then
WHERE(r)(valuewr(w, x)) = 0. The history h is called a witness of h.

Compared to a witness full history, a client history may omit write-read dependencies if
the written values do not satisfy the predicate of the read query. These values would not
be observable when interacting with the database as a black-box. This includes the case
when the write is a DELETE (recall that the special value †x indicating deleted rows falsifies
every predicate by convention). Figure 4.2 shows a full history as every query reads both x1
and x2. Figure 4.3a shows a client history: transactions t1, t2 does not read x2 and x1 resp.
Figure 4.3b is an extension but not a witness while Figure 4.3c is indeed a witness of it.

4.3 Axiomatic Semantics with Different Isolation Levels
We define an axiomatic semantics on histories where transactions can be assigned different
isolation levels, which builds on Chapter 2.

4.3.1 Isolation Configurations
The isolation configuration of a history is a mapping iso(h) : T → Iso associating to each
transaction its isolation level identifier. Whenever every transaction in a history has the same
isolation level ι, the isolation configuration of that history is denoted simply by ι.
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In general, for two isolation configurations I1 and I2, I1 is stronger than I2 when for every
transaction t, I1(t) is stronger than I2(t) (i.e., whenever I1(t) holds in an execution ξ, I2(t)
also holds in ξ). The weaker than relationship is defined similarly.

Given a full history h with isolation configuration iso(h), h is called consistent (with
respect to its isolation configuration) when there exists an execution ξ of h such that for
all transactions t in ξ, the axioms in iso(h)(t) are satisfied in ξ. Unlike in Chapter 3, the
constraints imposed by axiom a on event r (i.e. the conditions on co for ensuring that a(r)
holds in ξ) only apply whenever the axiom a is an axiom of the isolation level declared by
tr(r).

For example, let h be the full history in Figure 4.3c. If both t1, t2’s isolation are SER, then h
is not consistent, i.e., every execution ξ = (h, co) violates the corresponding axioms. Assume
for instance, that (t1, t2) ∈ co. Then, by axiom SER, as (init, t2) ∈ wrx1 and t1 writes x1, we
get that (t1, init) ∈ co, which is impossible as (init, t1) ∈ so ⊆ co. However, if the isolation
configuration is weaker (for example iso(h)(t2) = RC), then the history is consistent using
init <co t1 <co t2 as commit order.

Definition 4.3.1. A full history h = (T, so,wr) with isolation configuration iso(h) is consis-
tent iff there is an execution ξ of h s.t.

∧
t∈T,r∈reads(t),a∈iso(h)(t) a(r) holds in ξ; ξ is called a

consistent execution of h.

The notion of consistency on full histories is extended to client histories.

Definition 4.3.2. A client history h = (T, so,wr) with isolation configuration iso(h) is con-
sistent iff there is a full history h with the same isolation configuration which is a witness of
h and consistent; h is called a consistent witness of h.

In general, the witness of a client history may not be consistent. In particular, there may
exist several witnesses but no consistent witness.

4.3.2 Validation of the semantics
To justify the axiomatic semantics defined above, we define an operational semantics inspired
by real implementations and prove that every run of a program can be translated into a
consistent history. Every instruction is associated with an increasing timestamp and it reads
from a snapshot of the database defined according to the isolation level of the enclosing
transaction. At the end of the transaction we evaluate if the transaction can be committed
or not. We assume that a transaction can abort only if explicitly stated in the program. We
model an optimistic approach where if a transaction cannot commit, the run blocks (modelling
unexpected aborts). We focus on three of the most used isolation levels: SER, SI, RC. Other
isolation levels can be handled in a similar manner. For each run ρ we extract a full history
history(ρ). We show by induction that history(ρ) is consistent at every step.

Formally, the operational semantics is defined as a transition relation ⇒ between config-
urations. A configuration is a tuple containing the following:

• history h recording the instructions executed in the past,
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begin
t fresh e fresh P(j) = begin(ι);Body; commit;P B⃗(j) = ϵ

τ = 1 +max{T⃗(e′) | e′ ∈ events(h)} T⃗′ = T⃗[e→ τ ]

δ = snapshotι(h, S⃗, T⃗
′, e, begin) h′ = h⊕j (t, ι, {(e, begin)}, ∅)

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h′, γ⃗[j 7→ ∅], B⃗[j 7→ Body; commit], I⃗[t 7→ ι], T⃗′, S⃗[e 7→ δ],P[j 7→ S]

if-true
ψ(⃗a)[γ⃗(j)(a)/a : a ∈ a⃗] B⃗(j) = if(ψ(⃗a)){Instr};B
h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h, γ⃗, B⃗[j 7→ Instr;B], I⃗, T⃗, S⃗,P

if-false
¬ψ(⃗a)[γ⃗(j)(a)/a : a ∈ a⃗] B⃗(j) = if(ψ(x⃗)){Instr};B

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h, γ⃗, B⃗[j 7→ B], I⃗, T⃗, S⃗,P

local
v = e[γ⃗(j)(a′)/a′ : a′ ∈ a⃗′] B⃗(j) = a := e(a⃗′);B

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h, γ⃗[j, a 7→ v], B⃗[j 7→ B], I⃗, T⃗, S⃗,P

commit
B⃗(j) = commit e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, commit) validateι(h, T⃗

′, t)

h, γ⃗, B⃗, I⃗, T⃗,P⇒ h⊕j (e, commit), γ⃗, B⃗[j 7→ ϵ], I⃗, T⃗′, S⃗[e 7→ δ],P

abort
B⃗(j) = abort;B e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, abort) validateι(h, T⃗

′, t)

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h⊕j (e, abort), γ⃗, B⃗[j 7→ ϵ], I⃗, T⃗′, S⃗[e 7→ δ],P

Figure 4.4: An operational semantics for transactional programs. Above, next, computes the
next event, transaction, isolation level and timestamp employed respectively, while snapshotι
and readFrom denotes the snapshot visible to an instruction and the writes it reads from,
respectively. The validateι predicate checks if a transaction can be committed. They are
defined in Figure 4.6.

.

• a valuation map γ⃗ that records local variable values in the current transaction of each
session (γ⃗ associates identifiers of sessions that have live transactions with valuations of
local variables),

• a map B⃗ that stores the code of each live transaction (associating session identifiers with
code),

• a map I⃗ that tracks the isolation level of each executed transaction,
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insert
B⃗(j) = INSERT(R);B e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, INSERT) h′ = h⊕j (e, INSERT(R))

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h′, γ⃗, B⃗[j 7→ B], I⃗, T⃗′, S⃗[e 7→ δ],P

select
B⃗(j) = a := SELECT(p);B e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, SELECT) w⃗ = readFrom(h, T⃗, t, δ)

h′ = (h⊕j (e, SELECT(p)))
⊕

x∈Keys,w⃗[x] ̸=⊥

wr(w⃗[x], e)

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h′, γ⃗[(j, a) 7→ {r ∈ δ : p(r)}], B⃗[j 7→ B], I⃗, T⃗′, S⃗[e 7→ δ],P

update
B⃗(j) = UPDATE(p, U);B e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, UPDATE) w⃗ = readFrom(h, T⃗, t, δ)

h′ = (h⊕j (e, UPDATE(p, U)))
⊕

x∈Keys,w⃗[x]̸=⊥

wr(w⃗[x], e)

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h′, γ⃗, B⃗[j 7→ B], I⃗, T⃗′, S⃗[e 7→ δ],P

delete
B⃗(j) = DELETE(p);B e, t, ι, τ = next(h, j, T⃗)

T⃗′ = T⃗[e→ τ ] δ = snapshotι(h, S⃗, T⃗
′, e, DELETE) w⃗ = readFrom(h, T⃗, t, δ)

h′ = (h⊕j (e, DELETE(p)))
⊕

x∈Keys,w⃗[x]̸=⊥

wr(w⃗[x], e)

h, γ⃗, B⃗, I⃗, T⃗, S⃗,P⇒ h′, γ⃗, B⃗[j 7→ B], I⃗, T⃗′, S⃗[e 7→ δ],P

Figure 4.5: An operational semantics for transactional programs. Above, next, computes the
next event, transaction, isolation level and timestamp employed respectively, while snapshotι
and readFrom denotes the snapshot visible to an instruction and the writes it reads from,
respectively. The validateι checks if a transaction can be committed. They are defined in
Figure 4.6.

.

• a map T⃗ that associates events in the history with unique timestamps,

• a map S⃗ that associates events in the history with snapshots of the database,

• sessions/transactions P that remain to be executed from the original program.

For readability, we define a program as a partial function P : SessId⇀ Sess that associates
session identifiers in SessId with sequences of transactions as defined in Section 4.2.1. Similarly,
the session order so in a history is defined as a partial function so : SessId ⇀ Tlogs∗ that
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associates session identifiers with sequences of transaction logs. Two transaction logs are
ordered by so if one occurs before the other in some sequence so(j) with j ∈ SessId.

Before presenting the definition of ⇒I , we introduce some notation. Let h be a history
that contains a representation of so as above. We use h ⊕j (t, ιt, E, pot) to denote a history
where (t, ιt, E, pot) is appended to so(j). Also, for an event e, h⊕j e is the history obtained
from h by adding e to the last transaction log in so(j) and as a last event in the program
order of this log (i.e., if so(j) = σ; (t, ιt, E, pot), then the session order so′ of h⊕j e is defined
by so′(k) = so(k) for all k ̸= j and so(j) = σ; (t, ιt, E ∪ e, po ∪ {(e′, e) : e′ ∈ E})). Finally, for
a history h = (T, so,wr), h ⊕ wr(t, e) is the history obtained from h by adding (t, e) to the
write-read relation.

Figures 4.4 and 4.5 list the rules defining ⇒I . We distinguish between local computation
rules (if-true, if-false and local) and database-accesses rules (begin, insert, select,
update, delete, commit and abort); each associated to its homonymous instruction.
Database-accesses get an increasing timestamp τ as well as an isolation-depending snapshot
of the database using predicate snapshotι; updating adequately the timestamp and snapshot
maps (T⃗ and S⃗ respectively). Timestamps are used for validating the writes of a transaction
and blocking inconsistent runs as well as for defining the set of possible snapshots any event
can get. We use predicate readFrom for determining the values read by an event. Those reads
depend on both the event’s snapshot as well as the timestamp of every previously executed
event. Their formal definitions are described in Figure 4.6.

The begin rule starts a new transaction, provided that there is no other live transaction
(B = ϵ) in the same session. It adds an empty transaction log to the history and schedules the
body of the transaction. if-true and if-false check the truth value of a Boolean condition of
an if conditional. local handles the case where some local computation is required. insert,
select, update and delete handle the database accesses. insert add some rows R in the
history. select, update and delete read every key from a combination of its snapshot
and the local writes defined by readFrom function. The predicate _ writes _ implicitly uses
the previous information stored in the history via the function valuewr. Finally commit and
abort validate that the run of the transaction correspond to the isolation level specification.
These rules may block in case the validation is not satisfied as the predicate valuation does
not change with the application of posterior rules.

An initial configuration for program P contains the program P along with a history h =
({t0}, ∅, ∅), where t0 is a transaction log containing only writes that write the initial values
of all keys and whose timestamp and snapshot is 0 (S⃗, T⃗ = [t0 7→ 0]), and it does not
contain transaction code nor local keys (γ⃗, B⃗ = ∅). A run ρ of a program P is a sequence of
configurations c0c1 . . . cn where c0 is an initial configuration for P, and cm ⇒ cm+1, for every
0 ≤ m < n. We say that cn is reachable from c0. The history of such a run, history(ρ), is the
history hn in the last configuration cn. A configuration is called final if it contains the empty
program (P = ∅). Let hist(P) denote the set of all histories of a run of P that ends in a final
configuration.

The following theorem states the validation of our axiomatic semantics:

Theorem 4.3.3. For every run ρ, history(ρ) is a consistent full history.

The proof of Theorem 4.3.3 is split in two parts: Lemma 4.3.5 and Lemma 4.3.7. In
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e, t, ι, τ = next(h, j, T⃗) where
e fresh , t = last(h, j), ι = iso(h)(t) and τ = 1 +max{T⃗(e′) | e′ ∈ events(h)}

snapshotSER(h, S⃗, T⃗
′, e, ξ) =


max

T⃗′(ct′)

∣∣∣∣∣∣∣
t′ ∈ h ∧
ct′ = commit(t′) ∧
T⃗′(ct′) < T⃗′(e)

 if ξ = begin

S⃗(begin(tr(e))) otherwise

snapshotSI(h, S⃗, T⃗
′, e, ξ) =


choice


T⃗′(ct′)

∣∣∣∣∣∣∣
t′ ∈ h ∧
ct′ = commit(t′) ∧
vecT′(ct′) < T⃗′(e)


 if ξ = begin

S⃗(begin(tr(e))) otherwise

snapshotRC(h, S⃗, T⃗
′, e, ξ) = choice




T⃗′(ct′)

∣∣∣∣∣∣∣∣∣∣∣

t′ ∈ h∧
ct′ = commit(t′) ∧ T⃗′(ct′) < T⃗′(e)∧

∀e′.
(

(e′, e) ∈ po ∨
(tr(e′), tr(e)) ∈ so

)
=⇒ S⃗(e′) ≤ T⃗(ct′)




readFrom(h, T⃗, t, δ) = [x 7→ (localWr[x] ̸= ⊥) ?⊥ : wx for each x ∈ Keys]

where localWr[x] = maxpo{e | tr(e) = t ∧ e writes x} ∪ {⊥}

and wx writes x ∧ T⃗(wx) = max

{
T⃗(w′)

∣∣∣∣ w′ ∈ events(h) ∧ w′ writes x ∧
T⃗(commit(tr(w′))) ≤ δ

}

validateSER(h, T⃗
′, t) =

(
̸ ∃t′ ∈ h, x ∈ Keys s.t. (t reads x ∨ t writes x) ∧ t′ writes x

∧ T⃗′(begin(t)) < T⃗′(commit(t′)) < T⃗′(end(t))

)

validateSI(h, T⃗
′, t) =

(
̸ ∃t′ ∈ h, x ∈ Keys s.t. t writes x ∧ t′ writes x ∧
∧ T⃗′(begin(t)) < T⃗′(commit(t′)) < T⃗′(end(t))

)

validateRC(h, T⃗
′, t) = true

Figure 4.6: Definition of auxiliary functions for the operational semantics. The function choice
receives a set as input and returns one of its elements.

.

Lemma 4.3.5, we prove by induction that for any run ρ, history(ρ) is a full history; using the
auxiliary Lemma 4.3.4 about pending transactions. We then define in Equation 4.1 a relation
on transactions that plays the role of consistency witness for history(ρ). Then, we prove in
Lemma 4.3.6 that such relation is a commit order for history(ρ) to conclude in Lemma 4.3.7
that history(ρ) is indeed consistent. In all cases, we do a case-by-case analysis depending on
which rule is employed during the inductive step.

For the sake of simplifying our notation, we denote by rule(ρ, j, ρ′) to the rule s.t. applied
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to run ρ on session j leads to configuration ρ′.

Lemma 4.3.4. Let ρ be a run and history(ρ) = (T, so,wr) be its history. Any pending trans-
action in T is (so ∪ wr)-maximal.

Proof. We prove by induction on the length of a run ρ that any pending transaction is (so∪wr)-
maximal; where history(ρ) = (T, so,wr). The base case, where ρ = {c0} and c0 is an initial
configuration, is immediate by definition. Let us suppose that for every run of length at most
n the property holds and let ρ′ a run of length n + 1. As ρ′ is a sequence of configurations,
there exist a reachable run ρ of length n, a session j and a rule r s.t. r = rule(ρ, j, ρ′). Let us
call h = (T, so,wr), h′ = (T ′, so′,wr′) and e to history(ρ), history(ρ′) and the last event in po-
order belonging to last(h, j) respectively. By induction hypothesis, any pending transaction
in h is (so ∪ wr)-maximal. To conclude the inductive step, we show that for every possible
rule r s.t. r = rule(ρ, j, ρ′), the property also holds in h′.

• local, if-false, if-true, insert, commit, abort: The result trivially holds as
wr′ = wr, so′ = so and complete(T ′) ⊆ complete(T ).

• begin: We observe that in this case, T = T ∪ {last(h, j)}, reads(T ′) = reads(T ), wr′ =
wr and so′ = so∪{(t′, last(h, j)) | ses(t′) = j}. Thus, last(h, j) is pending and so′∪wr′-
maximal. Moreover, as described in Figure 4.4, B⃗(j) = ϵ; so there is no other transaction
in session j that is pending. Hence, as T ′ \complete(T ′) = T complete(T )∪{last(h, j)},
by induction hypothesis, every pending transaction is so′ ∪ wr′-maximal.

• select, update, delete: Figure 4.5 describes h′ by the equation h′ = (h ⊕j

(e, rule(ρ, j, s)))
⊕

x∈Keys,w⃗[x] ̸=⊥ wr(w⃗[x], e); where e is the new event executed and w⃗ is
defined following the descriptions in Figures 4.5 and 4.6. In this case, T ′ = T, reads(T ′) =
reads(T ) ∪ {e}, so′ = so, ∀x ∈ Keys s.t. w⃗[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t.
w⃗[x] ̸= ⊥, wr′x = wrx ∪ {(w⃗[x], e)}. Note that as described by Figure 4.6, in the latter
case, when w⃗[x] ̸= ⊥, tr(w⃗[x]) ∈ complete(T ) = complete(T ′). In conclusion, using
the induction hypothesis, we also conclude that every pending transaction is so′ ∪ wr′-
maximal.

Lemma 4.3.5. For every run ρ, history(ρ) is a full history.

Proof. We prove by induction on the length of a run ρ that history(ρ) is a full history; where
the base case, ρ = {c0} and c0 is an initial configuration, is trivial by definition. Let us
suppose that for every run of length at most n the property holds and let ρ′ a run of length
n+1. As ρ′ is a sequence of configurations, there exist a reachable run ρ of length n, a session
j and a rule r s.t. r = rule(ρ, j, ρ′). Let us call h = (T, so,wr), h′ = (T ′, so′,wr′) and e to
history(ρ), history(ρ′) and the last event in po-order belonging to last(h, j) respectively. By
induction hypothesis, h is a full history. To conclude the inductive step, we show that for
every possible rule r s.t. r = rule(ρ, j, ρ′), the history h′ is also a full history. In particular,
by Definitions 2.2.1 and 4.2.1, it suffices to prove that so′ ∪wr′ is an acyclic relation and that
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for every variable x and read event r, wr′x
−1(r) ↓ if and only if r does not read x from a local

write and in such case, valuewr′(wr′x
−1(r), x) ̸= ⊥.

• local, if-false, if-true, insert, commit, abort: The result trivially holds as
reads(T ′) = reads(T ),wr′ = wr and so′ = so; using that h is consistent.

• begin: We observe that h′ = h ⊕j (e, begin), so T = T ∪ {last(h, j)}, reads(T ′) =
reads(T ), wr′ = wr and so′ = so ∪ {(t′, last(h, j)) | ses(t′) = j}. In such case, by
Lemma 4.3.4, t is so′ ∪ wr′-maximal. Thus, so′ ∪ wr′ is acyclic as so ∪ wr is also acyclic.
Finally, as wr′ = wr, we conclude that h′ is a full history.

• select, update, delete: Here h′ = (h ⊕j (e, rule(ρ, j, s)))
⊕

x∈Keys,w⃗[x]̸=⊥ wr(w⃗[x], e)
where e is the new event executed and w⃗ is defined following the descriptions in Fig-
ures 4.5 and 4.6. In this case, T ′ = T, reads(T ′) = reads(T ) ∪ {e}, so′ = so, ∀x ∈ Keys
s.t. w⃗[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t. w⃗[x] ̸= ⊥, wr′x = wrx ∪ {(w⃗[x], e)}. Note
that as the timestamp of any event is always positive and T⃗(init) = 0; for any key
x, w[x] ̸= ⊥ if and only if localWr[x] = ⊥. Thus, w⃗ is well defined, and wr′x

−1(r) ↓
if and only localWr[x] = ⊥. In such case, as any event w writes on a key x if and
only if valuewr(w, x) ̸= ⊥, we conclude that valuewr′(wr

′
x
−1(r), x) ̸= ⊥. To conclude

the result, we need to show that so′ ∪ wr′ is acyclic. As ρ is reachable, by Figure 4.6’s
definition we know that for any event r and key x, if wr−1

x (r) ↓, tr(wr−1
x (r)) ∈ cmtt(h).

Thus, by Lemma 4.3.4, last(h, j) is so′∪wr′-maximal as it is not committed. Therefore,
by the definition of so′ and wr′, as so∪wr is acyclic and last(h, j) is so′ ∪wr′-maximal,
so′ ∪ wr′ is also acyclic. In conclusion, h′ is a full history.

Once proven that for any run ρ, history(ρ) is a full history, we need to prove that there
exists a commit order coρ that witnesses history(ρ) consistency. Equation 4.1 defines a relation
that we prove in Lemma 4.3.6 that it is a total order for history(ρ).

(t, t′) ∈ coρ ⇐⇒


t ∈ complete(T ) ∧ t′ ∈ complete(T ) ∧ T⃗(end(t)) < T⃗(end(t′)) or
t ∈ complete(T ) ∧ t′ ̸∈ complete(T ) or
t ̸∈ complete(T ) ∧ t′ ̸∈ complete(T ) ∧ T⃗(begin(t)) < T⃗(begin(t′))

(4.1)

Lemma 4.3.6. For every run ρ, the relation coρ defined above is a commit order for history(ρ).

Proof. We prove by induction on the length of a run ρ that the relation coρ defined by
the equation below is a commit order for history(ρ), i.e., if history(ρ) = (T, so,wr), then
so ∪ wr ⊆ coρ.

The base case, where ρ is composed only by an initial configuration is immediate as in
such case wr = ∅. Let us suppose that for every run of length at most n the property holds
and let ρ′ a run of length n+ 1. As ρ′ is a sequence of configurations, there exist a reachable
run ρ of length n, a session j and a rule r s.t. r = rule(ρ, j, ρ′). Let us call h = (T, so,wr),
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h′ = (T ′, so′,wr′) and e to history(ρ), history(ρ′) and the last event in po-order belonging to
last(h, j) respectively. By induction hypothesis, coρ is a commit order for h. To conclude
the inductive step, we show that coρ′ is also a commit order for h′.

• local, if-false, if-true: As h = h′ and T⃗ρ′ = T⃗ρ, coρ′ = coρ. Thus, the result
trivially holds.

• begin: In this case, e = begin(last(h, j)) and last(h, j) ̸∈ complete(Tρ′). Note
that for any event e′ ̸= e, T⃗(e) > T⃗(e′) and complete(T ′

ρ) = complete(ρ). Thus,
coρ′ = coρ ∪ {(t′, last(h′, j)) | t′ ∈ T}. As so ∪ wr ⊆ coρ, wr′ = wr and so′ =
so ∪ {(t′, last(h, j)) | ses(t′) = j}, so′ ∪ wr′ ⊆ coρ′ ; so coρ′ is a commit order for
h′.

• insert: In this case, as complete(T ′
ρ) = complete(Tρ), coρ′ = coρ. Hence, as so′ = so

and wr′ = wr, so′ ∪ wr′ ⊆ coρ′ .

• select, update, delete: Once again, as complete(T ′
ρ) = complete(Tρ), coρ′ = coρ.

Note that so′ = so, ∀x ∈ Keys s.t. w⃗[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t. w⃗[x] ̸= ⊥,
wr′x = wrx ∪ {(w⃗[x], e)}. In the latter case, where w⃗[x] ̸= ⊥, we know that tr(w⃗[x]) ∈
complete(T ) thanks to the definitions on Figure 4.6. By Equation 4.1, as last(h, j) is
pending, we deduce that (tr(w⃗[x]), tr(e)) ∈ coρ′ . Therefore, as so ∪ wr ⊆ coρ = coρ′ , we
conclude that so′ ∪ wr′ ⊆ coρ′ .

• commit, abort: In this case, e = endlast(h, j), coρ′ ↾T\{last(h,j)}×T\{last(h,j)}=
coρ ↾T\{last(h,j)}×T\{last(h,j)}, so′ = so and wr′ = wr. Thus, to prove that so′∪wr′ ⊆ coρ′

we only need to discuss about last(h, j). By Lemma 4.3.4, last(h, j) is so′ ∪ wr′-
maximal. Hence, we focus on proving that for any transaction t′ s.t. (t′, last(h, j)) ∈
so′ ∪ wr′, (t′, last(h, j)) ∈ coρ′ . Any such transaction t′ must be completed by
Lemma 4.3.4. However, by the definition on Figure 4.4, we know that T⃗(e) > T⃗(end(t′)),
so (t′, last(h, j)) ∈ coρ′ by Equation 4.1. Thus, so′ ∪ wr′ ⊆ coρ′ .

Lemma 4.3.7. For every total run ρ, the history(ρ) is consistent.

Proof. Let ρT be a total run. By Lemma 4.3.5, history(ρT ) is a full history. Thus, to prove
that history(ρ) is consistent, by Definition 4.3.1, we need to show that there exists a commit
order co that witnesses its consistency. We prove by induction on the length of a prefix ρ of
a total run ρT that the relation coρ defined in Equation 4.1 is a commit order that witnesses
history(ρ)’s consistency. Note that by Lemma 4.3.6, the relation coρ is indeed a commit order.

The base case, where ρ is composed only by an initial configuration is immediate as in
such case wr = ∅. Let us suppose that for every run of length at most n the property holds
and let ρ′ a run of length n+ 1. As ρ′ is a sequence of configurations, there exist a reachable
run ρ of length n, a session j and a rule r s.t. r = rule(ρ, j, ρ′). Let us call h = (T, so,wr),
h′ = (T ′, so′,wr′) and e to history(ρ), history(ρ′) and the last event in po-order belonging
to last(h, j) respectively. By induction hypothesis, coρ is a commit order that witnesses
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h’s consistency. To conclude the inductive step, we show that for every possible rule r s.t.
r = rule(ρ, j, ρ′), coρ′ is a commit order witnessing h′’s consistency.

By contradiction, let suppose that coρ′ does not witness h′’s consistency. Then, there
exists a variable x, a read event r, an axiom a ∈ ι and two committed transactions
t1, t2 s.t. (t1, e) ∈ wrx, t2 writes x, vis

coρ′
a (t2, r, x) holds in h′ but (t1, t2) ∈ coρ′ ; where

ι = I⃗(begin(e)). Thus, if we prove that such dependencies can be seen in h using coρ,
we obtain a contradiction as coρ witnesses h’s consistency. Note that as shown during the
proof of Lemma 4.3.6, coρ′ ↾T\{last(h,j)}×T\{last(h,j)}= coρ ↾T\{last(h,j)}×T\{last(h,j)}; so we
simply prove that last(h, j) cannot be t1, t2, tr(r) or any intermediate transaction causing
vis

coρ′
a (t2, r, x) to hold in h′.

• local, if-false, if-true: As h = h′ and coρ′ = coρ, this case is impossible.

• begin: In this case, coρ′ = coρ∪{(t′, last(h′, j)) | t′ ∈ T}. By Lemma 4.3.6, last(h′, j)
is (so′ ∪ wr′)-maximal, so last(h′, j) ̸= t1. Moreover, reads(last(h′, j)) = ∅, so r ̸=
reads(last(h′, j)). In addition, last(h, j) ̸= t2 as writes(last(h, j)) = ∅.

– a = Serializability,Prefix or Read Committed: In all cases, the axioms do not relate
any other transactions besides t1, t2 and tr(r), so this case is impossible.

– a = Conflict: In this case, last(h, j) ̸= t4 as it is coρ′-maximal; so this case is also
impossible.

• insert: In this case, coρ′ = coρ. Moreover, reads(T ′) = reads(T ), writes(T ′) =
writes(T ), so′ = so and wr′ = wr. Thus, this case is also impossible.

• select, update, delete: In this case, coρ′ = coρ, so′ = so, ∀x ∈ Keys s.t. w⃗[x] = ⊥,
wr′x = wrx and ∀x ∈ Keys s.t. w⃗[x] ̸= ⊥, wr′x = wrx ∪ {(w⃗[x], e)}. As last(h, j) is
pending, by Lemma 4.3.6, last(h, j) ̸= t1 as it is (so′ ∪ wr′)-maximal. Moreover, as
writes(last(h, j)) = ∅, last(h, j) ̸= t2. Then, we analyze if last(h, j) can be tr(r) (and
thus, r = e) or any intermediate transaction. Note that for all three isolation levels
we study, readFrom returns the value written by the transaction with the last commit
timestamp for a given snapshot time. Hence, as (t1, r) ∈ wrx and (t2, tr(r)) ∈ coρ,
we deduce that T⃗ρ(commit(t2)) > T⃗ρ(begin(last(h, j))). We continue the analysis
distinguishing between one case per axiom:

– a = Serializability: As ρ′ is a prefix of a total run ρT , there exists runs ρ̂, ρ̂′ s.t.
rule(ρ̂, j′, ρ̂′) is either commit or abort and both a prefix of ρT ; where j′ is the
session of tr(r). Without loss of generality, we can assume that ρ̂ and ρ̂′ have
minimal size; so last(history(ρ̂), j′) = tr(r). As ρT is total and ρ̂′ is a prefix of ρT ,
validateι(history(ρ̂, T⃗ρ̂′ , tr(r))) holds.
By the monotonicity of T⃗, T⃗ρ′ ⊆ T⃗ρ̂′ . Hence, as (t1, r) ∈ wrx and T⃗ρ̂′(commit(t1)) <

T⃗ρ̂′(commit(t2)), by the definitions of Figure 4.5 and Figure 4.6 we deduce
that T⃗ρ̂′(begin(tr(r))) < T⃗ρ̂′(commit(t2)). However, as T⃗ρ̂′(begin(tr(r))) <

T⃗ρ̂′(commit(t2)) < T⃗ρ̂′(end(tr(r))), tr(r) reads x, t2 writes x; we conclude that
validateSER(history(ρ̂

′), T⃗ρ̂′ , tr(r)) does not hold; so this case is impossible.
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– a = Conflict: In this case, last(h, j) cannot be an intermediate transaction nor
tr(r) as writes(last(h, j)) = ∅; so this case is also impossible.

– a = Prefix: In this case, last(h, j) cannot be an intermediate transaction as
by Lemma 4.3.4, last(h, j) is so′ ∪ wr′-maximal. Thus, last(h, j) must be
tr(r) and e = r. Therefore, there exists a transaction t4 s.t. (t2, t4) ∈
coρ′

∗ and (t4, last(h, j)) ∈ (so′ ∪ wr′). Note that t4 must be committed and
that T⃗ρ′(commit(t4)) < T⃗ρ′(begin(last(h, j))). Hence, as (t2, t4) ∈ coρ′

∗ and
(t1, t2) ∈ coρ′ and they are both committed, we deduce that T⃗ρ′(commit(t2)) <

T⃗ρ′(commit(t4)) < T⃗ρ′(begin(last(h, j))). However, this contradicts that
T⃗ρ′(commit(t2)) > T⃗ρ′(begin(last(h, j))) Thus, this case is impossible.

– a = Read Committed: In this case, last(h, j) must be tr(r) and in particular, e = r.
As depicted on Figure 4.5 and Figure 4.6, as (t1, r) ∈ wrx, S⃗ρ′(e) ≤ T⃗ρ′(t1).
However, as (t1, t2) ∈ coρ′ , T⃗ρ′(commit(t1)) < T⃗ρ′(commit(t2)). Hence, as
(t2, e) ∈ (so ∪ wr); po∗, there exists an event e′ ∈ last(h, j) s.t. (e, e′) ∈ po∗

and T⃗ρ′(commit(t2)) < T⃗ρ′(e
′). However, by snapshotRC’s definition, S⃗(e′) ≤ S⃗ρ′(e);

so we deduce that T⃗ρ′(commit(t1)) < T⃗ρ′(commit(t2)) < S⃗ρ′(e). This contradicts
the definition of readFrom; so this case is impossible.

• commit, abort: In this case, coρ′ ↾ (T \ {last(h, j)} × T \ {last(h, j)}) = coρ ↾
(T \ {last(h, j)} × T \ {last(h, j)}), so′ = so, wr′ = wr. First, using that by induction
hypothesis any prefix ρ̃ of ρ is consistent using coρ̃; we define ρ̃ the prefix of ρ that
introduces the read event r. As history(ρ̃) = (T̃ , s̃o, w̃r) is consistent and (t1, r) ∈ w̃rx; t1
is committed. Hence, by the definitions of readFrom and snapshotι on Figure 4.6 and the
rules semantics on Figure 4.5, we deduce that T⃗ρ(commit(t1)) > T⃗ρ(begin(t2)). Next,
as last(h, j) is pending in h, it is so∪wr-maximal. Therefore, it is also so′∪wr′-maximal;
so it cannot play the role of t1. However, it can play the role of t2, last(h, j) or the role
of an intermediate transaction. Let us analyze case by case depending on the axiom:

– a = Serializability: Two sub-cases arise:
∗ last(h, j) = t2: I this case, t2 writes x must hold. As ρ′ is a prefix of a total

run ρT , there exists runs ρ̂, ρ̂′ s.t. rule(ρ̂, j′, ρ̂′) is either commit or abort and
both a prefix of ρT ; where j′ is the session of tr(r). Without loss of general-
ity, we can assume that ρ̂ and ρ̂′ have minimal size; so last(history(ρ̂), j′) =
tr(r). As ρT is total and ρ̂′ is a prefix of ρT , validateι(history(ρ̂, T⃗ρ̂′ , tr(r)))
holds. Note that as (t1, t2) ∈ coρ′ and they are both committed,
T⃗ρ̂′(commit(t1)) < T⃗ρ̂′(commit(t2)). However, tr(r) reads x, t2 writes x and
T⃗ρ̂′(begin(tr(r))) < T⃗ρ̂′(commit(last(h, j))) < T⃗ρ̂′(commit(tr(r))); which
contradicts that validateι(history(ρ̂, T⃗ρ̂′ , tr(r))) holds. In conclusion, this case
is impossible.

∗ last(h, j) = tr(r): In such case, as t1 and t2 are committed, (t2, last(h, j)) ∈
coρ and (t1, t2) ∈ coρ. Hence, this case is also impossible as coρ witnesses that
h is consistent.
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– a = Prefix: In this case, there exists a transaction t4 s.t. (t2, t4) ∈ co∗ρ′ and
(t4, tr(r)) ∈ so′ ∪ wr′. As last(h, j) is pending in h, by Lemma 4.3.4, (so ∪ wr)-
maximal. Thus, as so′ = so and wr′ = wr, t4 ̸= last(h, j). Moreover, as (t2, t4) ∈
coρ′

∗, t4 is committed and last(h, j) ̸= t4 is the coρ′-maximal transaction that
is committed, t2 ̸= last(h, j). Hence, last(h, j) = tr(r). However, as so′ = so,
wr′ = wr′ and coρ′ ↾T\{last(h,j)}×T\{last(h,j)}= coρ ↾T\{last(h,j)}×T\{last(h,j)}; we
conclude that (t1, t2) ∈ coρ, (t2, t4) ∈ coρ

∗ and (t4, last(h, j)) ∈ so ∪ wr; which
contradicts that coρ witnesses h’s consistency, so this case is impossible.

– a = Conflict: In this case, there exists a variable y and a transaction t4 s.t.
t4 writes y, tr(r) writes y (t2, t4) ∈ co∗ρ′ , (t4, tr(r)) ∈ coρ′ . As last(h, j)
is the coρ′-maximal transaction that is committed, (t2, tr(r)), (t4, tr(r)) ∈ coρ′

and writes(tr(r)) ̸= ∅, we deduce that last(h, j) ̸= t2, t4. Hence, last(h, j)
must be tr(r) and e = commit(last(h, j)). On one hand, we observe that as
(t4, last(h, j)) ∈ coρ′ and they are both committed, T⃗ρ′(commit(t4)) < T⃗ρ′(e).
On the other hand, as (t2, t4) ∈ co∗ρ′ and T⃗ρ′(begin(tr(r))) < T⃗ρ′(commit(t2));
we conclude that T⃗ρ′(begin(tr(r))) < T⃗ρ′(commit(t4)). In conclusion, we obtain
that validateSI(h

′, T⃗ρ′ , last(h, j)) does not hold due to the existence of t4; which
contradict the hypothesis, so this case is impossible.

– a = Read Committed: In this case, r ̸= e as r is a read event and e is not,
and (t2, r) ∈ (so′ ∪ wr′); po′∗. Hence, as so′ = so,wr′ = wr and po′ =
po ∪ {(e′, e) | e′ ∈ last(h, j)}; (t2, r) ∈ (so ∪ wr); po∗. Finally, as last(h, j)
is pending in h, last(h, j) ̸= t2. Thus, as coρ′ ↾T\{last(h,j)}×T\{last(h,j)}=
coρ ↾T\{last(h,j)}×T\{last(h,j)}; we deduce that (t1, t2) ∈ coρ. However, this con-
tradicts that coρ witnesses h’s consistency; so this case is also impossible.

As every possible case is impossible, we deduce that the hypothesis, coρ′ does not wit-
nesses h′’s consistency is false; so we conclude the proof of the inductive step.

4.4 Complexity of Checking Consistency
4.4.1 Saturation and Boundedness
We investigate the complexity of checking if a history is consistent. Our axiomatic frame-
work characterize isolation levels as a conjunction of axioms as in Equation (2.1). However,
some isolation levels impose stronger constraints than others. For studying the complexity
of checking consistency, we classify them in two categories, saturable or not. An isolation
level is saturable if its visibility relations are defined without using the co relation (i.e. the
grammar in Equation (2.3) omits the co relation). Otherwise, we say that the isolation level
is non-saturable. For example, RC and RA are saturable while PC, SI and SER are not.

Definition 4.4.1. An isolation configuration iso(h) is saturable if for every transaction t,
iso(h)(t) is a saturable isolation level. Otherwise, iso(h) is non-saturable.
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We say an isolation configuration iso(h) is bounded if there exists a fixed k ∈ N s.t. for
every transaction t, iso(h)(t) is defined as a conjunction of at most k axioms that contain
at most k quantifiers. For example, SER employs one axiom and four quantifiers while SI
employs two axioms called Prefix and Conflict with four and five quantifiers respectively. Any
isolation configuration composed with SER, SI, PC, RA and RC isolation levels is bounded. We
assume in the following that isolation configurations are bounded.

Checking consistency requires computing the valuewr function and thus, evaluating WHERE

predicates. In the following, we assume that evaluating WHERE predicates on a single row
requires constant time.

4.4.2 Checking Consistency of Full Histories
Algorithm 6 computes necessary conditions for the existence of a consistent execution
ξ = (h, co) for a history h. It calls saturate, defined in Algorithm 5, to compute a “partial ”
commit order relation pco that includes (so∪wr)+ and any other dependency between trans-
actions that can be deduced from the isolation configuration. A consistent execution exists
iff this partial commit order is acyclic.

Algorithm 5 Extending an initial pco relation with necessary ordering constraints
1: function saturate(h = (T, so,wr), pco) ▷ pco must be transitive.
2: pcores ← pco
3: for all x ∈ Keys do
4: for all r ∈ reads(h), t2 ̸= tr(r) ∈ T s.t. t2 writes x and t2 ̸= tr(wr−1

x (r)) do
5: t1 ← tr(wr−1

x (r)) ▷ t1 is well defined as h is a full history.
6: for all v ∈ vis(iso(h)(tr(r))) do
7: if v(t2, r, x) then
8: pcores ← pcores ∪ {(t2, t1)}
9: return pcores

Algorithm 5 decides if a relation co is a commit order witnessing consistency of the history
(Lemma 4.4.2) and it runs in polynomial time (Lemma 4.4.4).

Lemma 4.4.2. For any full history h = (T, so,wr), the execution ξ = (h, co) is consistent if
and only if pcores = saturate(h, co) is acyclic.

Proof. Let h = (T, so,wr) be a history, ξ = (h, co) be an execution of h and pcores =
saturate(h, co) be the relation obtained thanks to Algorithm 5.

=⇒ Let us suppose that ξ is consistent. As co is acyclic, it suffice to prove that pcores =
co. By contradiction, let us suppose that pcores ̸= co. As co ⊆ pcores (line 2), there exists
t1, t2 s.t. (t2, t1) ∈ pcores \ co. In such case, such tuple must be added in line 8. Hence, there
exists x ∈ Keys, e ∈ reads(h) and v ∈ vis(iso(h)(tr(r))) s.t. t1 = wr−1

x (r) and viscoa (t2, r, x)
holds in h. As ξ is consistent, (t2, t1) ∈ co; which is impossible. Hence, pcores = co.
⇐= Let us suppose that pcores is acyclic. By contradiction, let us suppose that ξ is not

consistent. Then, there exists an read event r s.t. Cco
iso(h)(tr(r))(r) does not hold. Hence, by

Equation (2.1), there exists v ∈ vis(iso(h)(tr(r))), x ∈ Keys, t2 ∈ T s.t. v(co)(t2, r, x) hold
in h but (t2, t1) ̸∈ co; where t1 = wr−1

x (r). In such case, Algorithm 5 ensures in line 8 that
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(t2, t1) ∈ pcores. However, as co ⊆ pcores (line 2), co is a total order and pcores is acyclic,
co = pcores. Thus, (t2, t1) ∈ co; which is impossible. Thus, ξ is consistent.

Lemma 4.4.3. Let h = (T, so,wr) be a history s.t. iso(h) is bounded by k ∈ N, x ∈ Keys be
a key, t ∈ T be a transaction, r be a read event, pco ⊆ T × T be a partial order and v be a
visibility relation in vis(iso(h)(tr(r))). Evaluating v(pco)(t, r, x) is in O(|h|k−2).

Proof. As iso(h) is bounded, there exists k ∈ N s.t. |vis(iso(h)(t))| ≤ k. Hence, the number
of quantifiers employed by a visibility relation is at most k (and at least 3 according to
Equation 2.1). In addition, for each v ∈ vis(iso(h)(t)) evaluating each condition v(pco)(t, r, x)
can be modelled with an algorithm that employ k−3 nested loops, one per existential quantifier
employed by v, and that for each quantifier assignment evaluates the quantifier-free part of
the formula.

First, we observe that as WrCons predicate only query information about the k− 1 quan-
tified events, the size of such sub-formula is in O(k). Next, we notice that as WHERE predicate
can be evaluated in constant time, for every key x and event w, computing valuewr(x,w) is
in O(k · T ). Hence, as k is constant, evaluating the quantifier-free formula of v is in O(|h|)
and thus, evaluating v(pco)(t, r, x) is in O(|h|k−3 · |h|) = O(|h|k−2).

Lemma 4.4.4. Let h = (T, so,wr) be a full history, k be a bound on iso(h) and pco ⊆ T × T
be a partial order. Algorithm 5 runs in O(|h|k+1).

Proof. Let h = (T, so,wr) be a full history. Algorithm 5 can be decomposed in two blocks:
lines 4-8 and lines 6-8. Hence, the cost of Algorithm 5 is in O(|Keys|·|events(h)|·|T |·U); where
U is an upper-bound of the cost of evaluating lines 6-8. On one hand, both |Keys|, |events(h)|
and |T | are in O(|h|). On the other hand, as iso(h) is bounded by k, by Lemma 4.4.3,
U ∈ O(|h|k−2). Altogether, we deduce that Algorithm 5 runs in O(|h|k+1).

Algorithm 6 Checking saturable consistency
1: function checkSaturable(h = (T, so,wr))
2: if so ∪ wr is cyclic then return false

3: pco← saturate(h, (so ∪ wr)+)
4: return true if pco is acyclic, and false, otherwise

Algorithm 6 generalizes the results in [29] for full histories with heterogeneous saturable
isolation configurations.

Theorem 4.4.5. Checking consistency of full histories with saturable isolation configurations
can be done in polynomial time.

We split the proof of Theorem 4.4.5 in two Lemmas: Lemma 4.4.6 that proves the cor-
rectness of Algorithm 6 and Lemma 4.4.7 that ensures its polynomial-time behavior.

Lemma 4.4.6. For every full history h = (T, so,wr) whose isolation configuration is saturable,
Algorithm 6 returns true if and only if h is consistent.
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Proof. Let h = (T, so,wr) a full history whose isolation configuration is saturable and let pco
be the visibility relation defined in line 3 in Algorithm 6.

On one hand, let suppose that h is consistent and let ξ = (h, co) be a consistent execution
of h. If we show that pco ⊆ co, we can conclude that Algorithm 6 returns true as co is acyclic.
Let (t2, t1) ∈ pco and let us prove that (t2, t1) ∈ co. As so ∪ wr ⊆ co, by the definition of
commit order, we can assume that (t2, t1) ∈ pco \ (so ∪ wr). In such case, there must exists
x ∈ Keys, e ∈ reads(h) and v ∈ vis(iso(h)(tr(e))) s.t. t2 writes x and v((so ∪ wr)+)(t2, e, x)
holds. As iso(h)(tr(e)) is saturable, v((so ∪ wr)+)(t2, e, x) holds. Hence, as co is a commit
order and (so∪wr)+ ⊆ co; v(co)(t2, e, x) also holds. Therefore, as co witnesses h’s consistency,
we deduce that (t2, t1) ∈ co.

On the other hand, let us suppose that Algorithm 6 returns true. Then, pco must be acyclic
by the condition in line 4. Therefore, as pco is acyclic it can be extended to a total order co.
Let us prove that the execution ξ = (h, co) is consistent. Let x ∈ Keys, t2 ∈ T, e ∈ reads(h)
and v ∈ vis(iso(h)(tr(e))) s.t. t2 writes x and v(co)(t2, e, x) holds. As Algorithm 6 returns
true, we deduce that Algorithm 5 checks the condition at line 7. As iso(h)(tr(e)) is saturable,
v((so ∪ wr)+)(t2, e, x) also holds. Thus, (t2, t1) ∈ pco. As pco ⊆ co, (t2, t1) ∈ co; so co
witnesses h’s consistency.

Lemma 4.4.7. For every full history h whose isolation configuration is bounded, Algorithm 6
runs in polynomial time with respect O(|h|).

Proof. Let h = (T, so,wr) be a full history whose isolation configuration is saturable. First,
we observe that checking if a graph G = (V,E) is acyclic can be easily done with a DFS in
O(|V |+ |E|). Thus, the cost of checking acyclicity of both so∪wr (line 2) and pco (line 4) is
in O(|T | + |T |2) = O(|T |2) ⊆ O(|h|2). Furthermore, by Lemma 4.4.4, the cost of executing
Algorithm 5 is in O(|h|k+1); where k is a bound in iso(h). Thus, checking h’s consistency
with Algorithm 6 can be done in polynomial time.

For bounded non-saturable isolation configurations, checking if a history is consistent is
NP-complete as an immediate consequence of the results in [29]. These previous results apply
to the particular case of transactions having the same isolation level and being formed of classic
read and write instructions on a fixed set of variables (i.e. transactions defined as in Chap-
ter 3). The latter can be simulated by SQL queries using WHERE predicates for selecting rows
based on their key being equal to some particular value. For instance, SELECT(λr : key(r) = x)
simulates a read of a “variable” x.

4.4.3 Checking Consistency of Client Histories
We show that going from full histories to client histories, the consistency checking problem
becomes NP-complete, independently of the isolation configurations. Intuitively, NP-hardness
comes from keys that are not included in outputs of SQL queries. The justification for the
consistency of omitting such rows can be ambiguous, e.g., multiple values written to a row
may not satisfy the predicate of the WHERE clause, or multiple deletes can justify the absence
of a row.
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The width of a history width(h) is the maximum number of transactions which are pairwise
incomparable w.r.t. so. In a different context, previous work [29] showed that bounding
the width of a history (consider it to be a constant) is a sufficient condition for obtaining
polynomial-time consistency checking algorithms. This is not true for client histories.

Theorem 4.4.8. Checking consistency of bounded-width client histories with bounded isola-
tion configuration stronger than RC and width(h) ≥ 3 is NP-complete.

The proof of NP-hardness uses a reduction from 1-in-3 SAT which is inspired by the
work of Gibbons and Korach [58] (Theorem 2.7) concerning sequential consistency for shared
memory implementations. Our reduction is a non-trivial extension because it has to deal with
any weak isolation configuration stronger than RC.

The proof of Theorem 4.4.8 is structured in two parts: proving that the problem is in NP
and proving that is NP-hard. The first part corresponds to Lemma 4.4.9; which is analogous
as the proof of Lemma 4.4.21. The second part, based on a reduction to 1-in-3 SAT problem,
corresponds to Lemmas 4.4.10, 4.4.12 and 4.4.18.

Lemma 4.4.9. The problem of checking consistency for a bounded width client history h with
an isolation configuration stronger than RC and width(h) ≥ 3 is in NP.

Proof. Let h = (T, so,wr) a client history whose isolation configuration is stronger than RC.
Guessing a witness of h, h, and an execution of h, ξ = (h, co), can be done in O(|Keys| ·
|events(h)|2 + |T |2) ⊆ O(|h|3). By Lemma 4.4.2, checking if ξ is consistent is equivalent as
checking if saturate(h′, co) is an acyclic relation. As by Lemma 4.4.4, Algorithm 5 requires
polynomial time, we conclude the result.

For showing NP-hardness, we will reduce 1-in-3 SAT to checking consistency. Let φ be a

boolean formula with n clauses and m variables of the form φ =
n∧

i=1
(v0i ∨v1i ∨v2i ); we construct

a history hφ s.t. hφ is consistent if and only if φ is satisfiable with exactly only one variable
assigned the value true. The key idea is designing a history with width 3 that is stratified
in rounds, one per clause. In each round, three transactions, one per variable in the clause,
“compete” to be first in the commit order. The one that precedes the other two correspond
to the variable in φ that is satisfied.

First, we define the round 0 corresponding to the variables of φ. For every variable
xi ∈ var(φ), 1 ≤ i ≤ m we define an homonymous key xi that represents such variable. Doing
an abuse of notation, we say that xi ∈ var(φ). Then, we create two transactions 1i and 0i as-
sociated to the two states of xi, 1 and 0. The former contains the event INSERT({xi : 1, 1i : 1})
while the latter INSERT({xi : 0, 0i : 1}). Both 1i and 0i write also on a special key named 1i
and 0i respectively to indicate on the database that they have committed.

Next, we define rounds 1 − n representing each clause in φ. For each clause Ci := (v0i ∨
v1i ∨ v2i ), 1 ≤ i ≤ n, we define the round i. Round i is composed of three transactions: t0i ,
t1i and t2i , representing the choice of the variable among v0i , v

1
i and v2i that is selected in the

clause Ci. Transactions tji write on keys vji and vj+1 mod 3
i to preserve the structure of the

clause Ci, as well on the special homonymous key tji to indicate that such transaction has been
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executed; in a similar way as we did in the round 0. For that, we impose that transactions
tji are composed of an event SELECT(λx : eq(x, vji , v

j+1 mod 3
i , vj+2 mod 3

i )) followed by an event
INSERT({vji : 0, v

j+1 mod 3
i : 1, tji : −1}).

The function eq : Rows×Keys3 → {true, false} is described in Equation (4.2) and assumes
that Rows contains two distinct values 0 and 1 and that there is a predicate val : Rows →
{0, 1} that returns the value of a variable in the database. Intuitively, for any key r, if a, b, c
correspond to the three variables in a clause Ci (possibly permuted), whenever ¬eq(r, a, b, c)
holds, we deduce that the value assigned at key a is 1 while on the other two keys the
assigned value is 0. Moreover, whenever r refers to any of the special keys such as 0i, 1i or tji ,
the predicate eq(r, a, b, c) always holds.

eq(r, a, b, c) =


val(r) ̸= 1 if key(r) = a
val(r) ̸= 0 if key(r) = b ∨ key(r) = c

true if key(r) ∈ {tji | 1 ≤ i ≤ n, 0 ≤ j ≤ 2}
true if key(r) ∈ {1i, 0i | 1 ≤ i ≤ m}
false otherwise

(4.2)

Finally, we add an initial transaction that writes on every key the value 1. For that,
we assume that Keys contains only one key per variable used in φ as well as one key per
aforementioned transaction. We denote by T the set of all described transactions as well as
by round(t) to the round a transaction t ∈ T belongs to.

We describe the session order in the history hφ using an auxiliary relation so. We establish
that (1i, 1j), (0i, 0j) ∈ so for any pair of indices i, j, 1 ≤ i < j ≤ m. We also enforce that
(tji , t

j
i+1) ∈ so, for every 1 ≤ i ≤ n, 0 ≤ j, j′ ≤ 2. Finally, we connect round 0 with round 1 by

enforcing that (1m, t01) ∈ so and (0m, t
1
1) ∈ so. Then, we denote by so to the transitive closure

of so. Note that so is a union of disjoint total orders, so it is acyclic.
For describing the write-read relation, we distinguish between two cases: keys associated

to variables in φ or to a transaction in T . On one hand, for every key xi, 1 ≤ i ≤ m, we
define wrxi = ∅. On the other hand, for every key x associated to a transaction tx and every
read event r in a transaction t, we impose that (tx, r) ∈ wrx if round(tx) < round(t) while
otherwise we declare that (init, r) ∈ wrx. Then, we denote by wr =

⋃
x∈Keys wrx as well as

by hφ to the tuple hφ = (T, so,wr). A full depiction of hφ can be found in Figure 4.7.
We observe that imposing wrx = ∅ on every key x ∈ var(φ) ensures that, for any witness

of hφ, h = (T, so,wr), if (w, r) ∈ wr, then WHERE(r)(valuewr(w, x)) = 0. In particular, this
implies that each transaction tji must read key vji from a transaction that writes 1 as value
while it also must read keys vj+1 mod 3

i and vj+2 mod 3
i from a transaction that writes 0 as

value. Intuitively, this property shows that φ is well-encoded in hφ.
The proof is divided in four steps: Lemma 4.4.10 proves that the hφ is a polynomial-size

transformation of φ, Lemma 4.4.11 proves that the hφ is indeed a history and Lemmas 4.4.12
and 4.4.18 prove that hφ is consistent if and only if φ is 1-in-3 satisfiable.

Lemma 4.4.10. hφ is a polynomial size transformation on the length of φ.

Proof. If φ has n clauses and m variables, hφ employs 6n+2m+1 transactions. As m ≤ 3n,
|T | ∈ O(n). The number of variables, |Keys| = m+|T |, so |Keys| ∈ O(n). As every transaction
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Figure 4.7: Description of the history hφ from Theorem 4.4.8. Dashed edges only belong to
a possible consistent witness of hφ, where we assume v01 = xk. Transaction t01 reads v01, v11
and v21 from round 0; imposing some constraints on the transactions that write them. Due to
axiom RC’s definition, transaction t11 must read v11 from t01 while transaction t21 must read v11
from t11.

has at most two events, |events(hφ)| ∈ O(n). Moreover, wr ⊆ Keys× T × T and so ⊆ T × T ,
so |wr| ∈ O(n3) and |so| ∈ O(n2). Thus, hφ is a polynomial transformation of φ.

For proving that hφ is a history, by Definition 2.2.1 it suffices to prove that so ∪ wr is
an acyclic relation. Indeed, by our choice of wr, for every key x, wr−1

x is a partial function
that, whenever it is defined, associates reads to writes on x. Hence, from Lemma 4.4.11 we
conclude that hφ is a history.

Lemma 4.4.11. The relation so ∪ wr is acyclic.

Proof. For proving that so∪wr is acyclic, we reason by induction on the number of clauses. In
particular, we show that for every pair of transactions t, t′ if round(t′) ≤ i and (t, t′) ∈ so∪wr,
then round(t) ≤ i and (t′, t) ̸∈ so ∪ wr.

• Base case: The base case refers to round 0; which contains init and transactions
0j , 1j , 1 ≤ j ≤ m. We observe that transactions in round 0 do not contain any read
event. Hence, (t, t′) ∈ so. In such case, the result immediately holds by construction of
so.

• Inductive case: Let us suppose that the induction hypothesis holds for every 1 ≤ i ≤
k ≤ n and let us prove it also for k+1 ≤ n. If round(t′) < k+1, round(t′) ≤ k and the
result holds by induction hypothesis; so we can assume without loss of generality that
round(t′) = k + 1. By construction of both so and wr, if (t, t′) ∈ so ∪ wr, round(t) <
round(t′). Hence, round(t) ≤ k. By induction hypothesis on t, if (t′, t) ∈ so ∪ wr,

76



Section 4.4. Complexity of Checking Consistency

round(t′) ≤ k < k + 1 = round(t′); which is impossible. Thus, we conclude that
(t′, t) ̸∈ so ∪ wr.

Lemma 4.4.12. If φ is 1-in-3 satisfiable then hφ is consistent.

Proof. Let α : var(φ) → {0, 1} an assignment that makes φ 1-in-3 satisfiable. To construct
a witness of hφ we define a write-read relation wr that extends wr and a total order on its
transactions. For that, we first define a total order co between the transactions in T . In
Equation 4.2 we define two auxiliary relations r̂ and b̂ based on α that totally orders the
transactions that belongs to the same round.

For every clause Ci, 1 ≤ i ≤ n let ji be the unique index s.t. α(vjii ) = 1; where α(vjii ) is a
shortcut for vjii [α(x1)/x1 . . . α(xm)/xm]. Such index allow us to order the transactions in the
round i: tjii preceding tji+1 mod 3

i while tji+1 mod 3
i preceding tji+2 mod 3

i . Intuitively, tjii must
precede the other two transactions in the total order as vji is the variable that is satisfied.
Then, we connect every pair of consecutive rounds thanks to relation ĉ1.

For transactions in round 0, we enforce that transactions associated to the same variable
are totally ordered using α. In particular, for every i, 1 ≤ i ≤ m, 0i precedes 1i in b̂ if and
only if α(vi) = 1. Then, we connect every pair tuple in b̂ with relation ĉ2. Finally, we connect
init with transactions in round 0 as well as round 0 with round 1 thanks to relation ĉ3.

r̂ =

{
(tjii , t

ji+1 mod 3
i )

(tji+1 mod 3
i , tji+2 mod 3

i )

∣∣∣∣∣ 1 ≤ i ≤ n, 0 ≤ ji ≤ 2

α(vjii ) = 1

}
b̂ = {(0i, 1i) | xi ∈ Keys ∧ α(xi) = 1} ∪ {(1i, 0i) | xi ∈ Keys ∧ α(xi) = 0}

ĉ1 = {(tji+2 mod 3
i , t

ji+1

i+1 ) | 1 ≤ i < n, 0 ≤ ji, ji+1 ≤ 2, α(vjii ) = 1 = α(v
ji+1

i )}
ĉ2 = {(1i, 0j), (1i, 1j), (0i, 0j), (0i, 1j) | 1 ≤ i < j ≤ m}

ĉ3 = {(init, 01), (init, 11)} ∪ {(1m, tj11 ), (0m, t
j1
1 ) | 0 ≤ j1 ≤ 2, α(vj1i ) = 1} (4.3)

Let co = (r̂ ∪ ĉ1 ∪ b̂ ∪ ĉ2 ∪ ĉ3)
+. The proof of Lemma 4.4.12 concludes thanks to Lem-

mas 4.4.13 and 4.4.14, Proposition 4.4.16 and Corollary 4.4.17. First, Lemma 4.4.13 proves
that the relation co is a total order between transactions. Then, Lemma 4.4.14 shows that
co allow us define h, a witness of hφ. And finally, with the aid of Proposition 4.4.16 and
Corollary 4.4.17 we conclude that h is consistent; so it is a consistent witness of hφ.

Lemma 4.4.13. The relation co is a total order.

Proof. For proving that co is a total order, we show by induction that if (t, t′) ∈ co and
round(t′) ≤ i, then round(t) ≤ i and (t′, t) ̸∈ co.

• Base case: We observe that by construction of co, t′ ̸= init. We prove the base case by
a second induction that if there exists i′, 1 ≤ i′ ≤ m s.t. t′ ∈ {0i′ , 1i′} and (t, t′) ∈ co
then either t = init or there exists i ≤ i′ s.t. t ∈ {0i, 1i} and (t′, t) ̸∈ co.
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– Base case: Let us suppose that α(x0) = 1 as the other case is symmetric. If
t = init, (t′, t) ̸∈ co as init is minimal in co. If not, then t′ = 11 and t = 01.
We conclude once more that (t, t′) ̸∈ co as 01 only have init as a co-predecessor;
which is co-minimal.

– Induction hypothesis: Let us suppose that the induction hypothesis holds for every
1 ≤ i ≤ k ≤ m and let us prove it also for k + 1 ≤ m. If i′ < k, we conclude the
result by induction hypothesis; so we can assume that i′ = k. Moreover, as init
is co-minimal, we can assume without loss of generality that t ̸= init. Thus, by
construction of co, there must exists i, 1 ≤ i ≤ m s.t. t ∈ {0i, 1i}. In particular,
i ≤ i′. Thus, if i < i′ and (t′, t) would be in co, by induction hypothesis on t we
would deduce that i′ ≤ i < i′; which is impossible. Hence, we can assume that i′ =
i. Let us assume that α(xi) = 1 as the other case is symmetric. Thus, we deduce
that t = 0i and t′ = 1i. We observe that (t′, t) ̸∈ r̂∪ ĉ1 ∪ b̂∪ ĉ2 ∪ ĉ3. As T is finite,
if (t′, t) ∈ co, there would exist a transaction t′′ ̸= t′ s.t (t′′, t) ∈ r̂∪ ĉ1 ∪ b̂∪ ĉ2 ∪ ĉ3
and (t′, t′′) ∈ co. But in such case, either t′′ = init or there would exists an integer
i′′, 1 ≤ i′′ < i ≤ m s.t. t′′ ∈ {0i′′ , 1i′′}; which is impossible by induction hypothesis.
In conclusion, (t′, t) ̸∈ co.

• Inductive case: Let us suppose that the induction hypothesis holds for every 1 ≤ i ≤ k ≤
n and let us prove it also for k+1 ≤ n. Let thus t, t′ transactions s.t. round(t)′ ≤ k+1
and (t, t′) ∈ co. If round(t′) < k + 1, round(t′) ≤ k and the result holds by induction
hypothesis; so we can assume without loss of generality that round(t′) = k + 1. By
construction of co, round(t) ≤ k + 1. If round(t) ≤ k and (t′, t) ∈ co, by induction
hypothesis on t we obtain that round(t′) ≤ k < k + 1 = round(t′); which is impossible.
Thus, we can also assume without loss of generality that round(t) = k+1. In such case,
we observe that ĉ1, b̂ and ĉ1 do not order transactions belonging to the same round.
Hence if (t, t′) ∈ co and (t′, t) ∈ co, we deduce that (t, t′) ∈ r̂ and (t′, t) ∈ r̂. However,
by construction of r̂, this is impossible, so we conclude once more that (t′, t) ̸∈ co.

Next, we we construct a full history h using co that extends hφ. For every key x and read

event r, we define wr
x as follows:

wr
x = max

co
{t ∈ T | t writes x ∧ (t, r) ∈ co} (4.4)

Observe that wr
x is well-defined as co is a total order and init write every key. For each

key x ∈ var(φ), we define the relation wrx = {(wr
x, r) | r ∈ reads(h)}. Then, we define the

relation wr =
⋃

x∈var(φ) wrx ∪ wr as well as the history h = (T, so,wr). Lemma 4.4.14 proves
that h is indeed a full history while Lemma 4.4.15 shows that h is a witness of hφ.

Lemma 4.4.14. h is a full history.

Proof. For showing that h is a full history it suffices to show that so ∪ wr is acyclic. As co is
a total order and wr \wr ⊆ co, proving that so∪wr ⊆ co concludes the result. First, we prove
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that so ⊆ co. Let t, t′ be transactions s.t. (t, t′) ∈ so. In such case, round(t) ≤ round(t′); and
they only coincide if round(t) = round(t′) = 0. Three cases arise:

• round(t) = round(t′) = 0: As (t, t′) ∈ ĉ2, we conclude that (t, t′) ∈ co.

• round(t), round(t′) > 0: As round(t), round(t′) > 0 and round(t) ≤ round(t′), by con-
struction of so we deduce that round(t) < round(t′). As co is transitive, we can as-
sume without loss of generality that round(t′) = round(t) + 1. Therefore, there exists
i, j, 1 ≤ i < n, 0 ≤ j ≤ 2 s.t. t = tji and t′ = tji+1. Let ji, ji+1, 0 ≤ ji, ji+1 ≤ 2 be the
integers s.t. α(vjii ) = 1 = α(v

ji+1

i+1 ). In such case, we know that (tji , t
ji+2 mod 3
i ) ∈ r̂∗,

(tji+2 mod 3
i , tjii+1) ∈ ĉ1 and (t

ji+1

i+1 , t
j+1
i+1 ) ∈ r̂∗. Hence, as co is transitive, (t, t′) ∈ co.

• round(t) = 0, round(t′) > 0: In this case, as round(t) = 0, there exists i, 1 ≤ i ≤ m
s.t. xi ∈ var(φ), t ∈ {0i, 1i}. We assume without loss of generality that t = 1i as the
other case is symmetric. In addition, as round(t′) > 0 and (t, t′) ∈ so, there exists
i, 1 ≤ i ≤ n s.t. t′ = t0i . We rely on the two previous proven cases to deduce the result:
as (0i, 0m) ∈ so ⊆ co, (0m, t

j0
0 ) ∈ ĉ3, (t

j0
0 , t

0
0) ∈ r̂∗ and (t00, t

0
i ) ∈ so ⊆ co, we conclude

that (t, t′) ∈ co.

Next, we prove that wr ⊆ co. Let r be a read event and w be a write event s.t. (w, r) ∈ wr.
Then, there exists i, i′, 1 ≤ i < i′ ≤ n and j, j′, 0 ≤ j, j′ ≤ 2 s.t. w = tji and tr(r) = tj

′

i′ . Let
ji′−1, ji′ , 0 ≤ ji′−1, ji′ ≤ 2 be the integers s.t. α(vji′−1

i′−1 ) = 1 = α(vj
′

i′ ). In such case, we know
that (tji , t

j
i′−1) ∈ so∗, (tji′−1, t

ji′+2 mod 3
i′−1 ) ∈ r̂∗, (t

ji′+2 mod 3
i′−1 , tjii′ ) ∈ ĉ1 and (t

ji′
i′ , t

j′

i′ ) ∈ r̂∗. As
so ⊆ co and co is transitive, we conclude that (w, r) ∈ co.

We show that h is indeed a full history, that is a witness of hφ and that also witness hφ’s
consistency.

Lemma 4.4.15. The history h is a witness of hφ.

Proof. By Lemma 4.4.14 h is a full history. Hence, for proving that h is a witness
of hφ, we need to show that for every key x ∈ Keys and every read r, if wr−1

x (r) ↑,
WHERE(r)(valuewr(w

r
x, x)) = 0. Note that by construction of hφ, such cases are those where

there exists an homonymous variable x ∈ var(φ). In addition, we observe that if r is a read
event, there exists indices 1 ≤ i ≤ n, 0 ≤ j ≤ 2 s.t. r ∈ tji . Thus, by Equation 4.2, we only
need to prove that WHERE(r)(valuewr(wr

x, x)) = 0 whenever x is v0i , v
1
i or v2i .

We prove as an intermediate step that in each round, every key has the same value in h.
For every round i and key x ∈ var(φ), we consider the transaction tix = maxco{t | t writes x∧
round(t) ≤ i}. We prove by induction on the number of the round that for every x associated
with an homonymous variable x, valuewr(tix, x) = valuewr(t

0
x, x) = (x, α(x)).

• Base case: The base case, i = 0, is immediately trivial. Note that in this case,
valuewr(t

0
x, x) = (x, α(x)).
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• Inductive case: Let us assume that valuewr(t
i−1
x , x) = valuewr(t

0
x, x) and let us prove

that valuewr(t
i
x, x) = (x, α(x)). Note that in round i only keys associated to the vari-

ables of literals v0i , v
1
i and v2i are written; so for every other key x, tix = ti−1

x and by
induction hypothesis, valuewr(tix, x) = (x, α(x)). Let thus j, 0 ≤ j ≤ 2 s.t. α(vji ) = 1.
In this case, ti

vji
= ti

vj+2 mod 3
i

= tj+2 mod 3
i and ti

vj+1 mod 3
i

= tj+1 mod 3
i . Hence, we can

conclude the inductive step as:

valuewr(t
j+2 mod 3
i , vji ) = (vji , 1) = (vji , α(v

j
i ))

valuewr(t
j+1 mod 3
i , vj+1 mod 3

i ) = (vj+1 mod 3
i , 0) = (vj+1 mod 3

i , α(vj+1 mod 3
i ))

valuewr(t
j+2 mod 3
i , vj+2 mod 3

i ) = (vj+2 mod 3
i , 0) = (vj+2 mod 3

i , α(vj+2 mod 3
i ))

We can thus conclude that h is a witness of hφ. Let i, j, 1 ≤ i ≤ n, 0 ≤ j ≤ 2 be indices s.t.
α(vji ) = 1. For simplifying notation, we denote by t0, t1, t2 to the transactions tji , t

j+1 mod 3
i

and tj+2 mod 3
i respectively. We also denote by r0, r1, r2 to the read events that belong to t0, t1

and t2 respectively as well by v0, v1, v2 to the keys associated to t0, t1 and t2 respectively. For
every key x ̸= v0, v1, v2 and for every transaction t that writes x, WHERE(rj)(valuewr(t, x)) =
0, 0 ≤ j ≤ 2; so we can focus only on keys v0, v1 and v2. Three cases arise:

• Transaction t0: Let thus x be a key in {v0, v1, v2}. By construction of hφ and co, t0
reads x from ti−1

x . As proved before, valuewr(ti−1
x , x) = (x, α(x)) and α(x) = (x, 1)

if and only if x = v0. Hence, as WHERE(r0)(valuewr(t
i−1
x , x)) = 0 we conclude that

WHERE(r0)(valuewr(w
r0
x , x)) = 0.

• Transaction t1: In this case, t1 reads v2 from ti−1
v2 and it reads v0 and v1 from t0. On

one hand, valuewr(ti−1
v2 , v2) = (v2, α(v2)) = (v2, 0). Thus, as WHERE(r1)(t

i−1
v2 ) = 0, we

conclude that WHERE(r1)(valuewr(wr1
v2 , v2)) = 0. On the other hand, by construction of

hφ, WHERE(r1)(valuewr(t0, v0)) = WHERE(r1)(valuewr(t0, v1)) = 0. Thus, the result hold.

• Transaction t2: In this case, t2 read v0 from t0 and v1 and v2 from t1. By
construction of hφ both WHERE(r2)(valuewr(t0, v0)), WHERE(r2)(valuewr(t1, v1)) and
WHERE(r2)(valuewr(t1, v2)) are equal to 0; so we conclude the result.

We conclude the proof showing that the execution ξ = (h, co) is a consistent execution of
hφ. We observe that by construction of wr and co, h satisfies SER using co. Corollary 4.4.17
proves that iso(hφ) is weaker than SER; which allow us to conclude that so h satisfies iso(hφ).
In other words, that h is consistent.

Proposition 4.4.16. Let h = (T, so,wr) be a full history, ξ = (h, co) be an execution of h, r
be a read event, t2 be a transaction distinct from tr(r), x be a key and v ∈ vis(iso(h)(tr(e))).
If v(t2, r, x) holds in ξ, then (t2, tr(r)) ∈ co.

Proof. The proposition is result of an immediate induction on the definition of v. The base
case is po, so,wr ⊆ co, which holds by definition. The inductive case follows from the operators
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employed in Equation 2.3: union, composition and transitive closure of relations; which are
monotonic.

As a consequence of Proposition 4.4.16 and Serializability axiom definition, we obtain the
following result.

Corollary 4.4.17. Any isolation level is weaker than SER.

Lemma 4.4.18. If hφ is consistent then φ is 1-in-3 satisfiable.

Proof. If hφ is consistent, there exists a consistent witness of hφ h = (T, so,wr). As h is
consistent and iso(h) is stronger than RC, there exists a consistent execution of h, ξ = (h, co).
Let αh : var(φ) → {0, 1} s.t. for every variable vj , 1 ≤ j ≤ m, αh(vj) = 1 if and only if
(0j , 1j) ∈ co. We show that φ is 1-in-3 satisfiable using α.

As an intermediate step, we prove that αh describes the value read by any transaction in
h. For every i, 0 ≤ i ≤ n and key x s.t. the variable x ∈ var(φ), let tix = maxco{t | t writes x∧
round(t) ≤ i}. We prove by induction that for every i, 0 ≤ i ≤ n (1) valuewr(t

i
x, x) =

(x, α(x)), (2) for any read event r from a transaction t s.t. round(t) ≤ i, if (w, r) ∈ wrx, then
w coincides with maxco{t ∈ T | t writes x ∧ (t, tr(r)) ∈ co} and (3) if i > 0, α(vji ) = 1 if and
only if (tji , t

j+1 mod 3
i ) ∈ co and (tj+1 mod 3

i , tj+2 mod 3
i ) ∈ co.

• Base case: Let j, 1 ≤ j ≤ m be the integer s.t. x = vj . In such case, (1) holds as
t0x = 1j if and only if α(vj) = 1; and in such case, valuewr(t0x, vj) = (vj , α(vj)). Also (2)
trivially holds as there is no read event in a transaction belonging to round 0. Finally,
(3) also trivially holds as i = 0.

• Inductive case: We assume that (1), (2) and (3) hold for round i− 1 and let us prove it
for round i. Let j the index of the co-minimal transaction among t1i , t

2
i , t

3
i . We denote

by t0, t1, t2 to tji , t
j+1 mod 3
i and tj+2 mod 3

i respectively, by r0, r1, r2 to the unique read

event in t0, t1 and t2 respectively and by v0, v1 and v2 to the keys associated to t0, t1
and t2 respectively.

Let thus x ∈ var(φ) be a key, t be a transaction among t0, t1, t2 and let wt
x be a

transaction s.t. (wt
x, t) ∈ wrx. As round(ti−1

x ) < round(t), (ti−1
x , t) ∈ wrti−1

x
. Hence, as

h satisfies RC, either wt
x = ti−1

x or round(wt
x) = i.

First we prove (3) analyzing t0. As (t0, t1) ∈ co and (t0, t2) ∈ co and wr ⊆ co
we deduce that wt

x = ti−1
x . In such case, as (1) holds by induction hypothesis and

WHERE(r0)(valuewr(t
i−1
x , x)) = 0, we conclude that α(x) = 1 if x = v0 and α(x) = 0 if

x = v1, v2.

For proving (2) we analyze three cases depending on t:

– t = t0: As proved before, if t = t0, wt
x = ti−1

x . By definition of ti−1
x , (2) holds.

– t = t1: As t0 only writes v0 and v1 and (t1, t2) ∈ co we deduce that for every key x ̸=
v0, v1, wt1

x = ti−1
x ; which immediately implies (2). As (3) holds for round i, we know

that α(v0) = 1 and α(v1) = 0. Thus, if x = v0, v1, WHERE(r2)(valuewr(ti−1
x , x)) = 1;

so (ti−1
x , t1) ̸∈ wrx. In conclusion, wt1

x = t0; which implies (2) by definition of t0.
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– t = t2: As t0, t1 only write v0, v1 and v2 we deduce that for every other key, wt2
x =

ti−1
x ; which implies (2). Otherwise, we analyze the three sub-cases arising:
∗ x = v2: In this case, t0 does not write v2; so there is only two options left,
ti−1
x and t1. As (3) holds for round i, α(v2) = 0. Thus, as by induction

hypothesis (2) holds for round i − 1, valuewr(ti−1
v2 , v2) = (v2, 0) and hence,

WHERE(r2)(valuewr(t
i−1
v2 , v2)) = 1. Therefore, wt2

v2 must be t1; which implies
(2).

∗ x = v0: Once again, there is only two possible options as t1 does not write
v0. As (3) holds for round i, α(v0) = 1. Thus, as by induction hy-
pothesis (2) holds for round i − 1, valuewr(t

i−1
v0 , v0) = (v0, 1) and hence,

WHERE(r2)(valuewr(t
i−1
v0 , v0)) = 1. Therefore, wt2

v0 must be t0; which implies
(2).

∗ x = v1: We observe in this case that valuewr(t0, v1) = (x, 1); so
WHERE(r2)(valuewr(t0, v1)) = 1. Therefore, there is only two possible options,
t1 and ti−1

x . As h satisfies RC and (t1, t2) ∈ wrv2 , if (ti−1
x , t2) ∈ wrv1 , we deduce

that (t1, t
i−1
x ) ∈ co. However, as round(ti−1

x ) < round(t1), (ti−1
x , t1) ∈ wrti−1

x
;

which is impossible as wr ⊆ co. Thus, we conclude that wt2
v2 = t1; which

implies (2).

For proving (1) we observe that for every key x ̸= v0, v1, v2, tix = ti−1
x and by induction

hypothesis we conclude that valuewr(t
i
x, x) = (x, α(x)). Moreover, as (t0, t1) ∈ co and

(t1, t2) ∈ co, tiv0 = tiv2 = t2 and tiv1 = t1. In addition, as (3) holds, α(v0) = 1 and
α(v1) = α(v2) = 0. This allow us to conclude (1) also for the keys v0, v1 and v2; so the
inductive step is proven.

After proving (1), (2) and (3) we can conclude that φ is 1-in-3 satisfiable. For every round
i, we observe that by (1) valuewr(t

i
x, x) = (x, α(x)). Moreover, as (2) holds, (tix, ti0) ∈ wrx;

where ti0 is the first transaction in co among the transactions in round i. As h is a witness
of hφ, WHERE(ri0)(valuewr(tix, x)) = 0; where ri0 is the read event of ti0. Hence, exactly one
variable among v0i , v

1
i and v2i has 1 as image by α. Therefore, φ is 1-in-3 satisfiable.

4.4.4 Checking Consistency of Partial Observation Histories
The proof of Theorem 4.4.8 relies on using non-trivial predicates in WHERE clauses. We also
prove that checking consistency of client histories is NP-complete irrespectively of the com-
plexity of these predicates. This result uses another class of histories, called partial-observation
histories. These histories are a particular class of client histories where events read all inserted
keys, irrespectively of their WHERE clauses (as if these clauses where true).

Definition 4.4.19. A partial observation history h = (T, so,wr) is a client history for which
there is a witness h = (T, so,wr) of h, s.t. for every x, if (w, r) ∈ wrx \ wrx, w deletes x.

Theorem 4.4.20. Checking consistency of partial observation histories with bounded isolation
configurations stronger than RC is NP-complete.
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The proof of NP-hardness uses a novel reduction from 3-SAT. The main difficulty for
obtaining consistent witnesses of partial observation histories is the ambiguity of which delete
event is responsible for each absent row.

The structure of the proof is divided in two parts: proving that the problem is NP and
proving that it is NP-hard. The first part, corresponding to Lemma 4.4.21, is straightforward
as, for any client history, we simply guess a suitable witness and a total order on its transac-
tions for deducing its consistency applying Definition 4.3.1. The second part, corresponding
to Lemmas 4.4.27 and 4.4.28 is more complicated. We use a novel reduction from 3-SAT. We
encode a boolean formula φ in a history hφ, s.t. hφ is consistent iff φ is satisfiable.

We first prove that the problem is indeed in NP (Lemma 4.4.21).

Lemma 4.4.21. The problem of checking consistency for a client history with an isolation
configuration stronger than RC is in NP.

Proof. Let h = (T, so,wr) a client history whose isolation configuration is stronger than RC.
Guessing a witness of h, h, and an execution of h, ξ = (h, co), can be done in O(|Keys| ·
|events(h)|2 + |T |2) ⊆ O(|h|3). By Lemma 4.4.2, checking if ξ is consistent is equivalent as
checking if saturate(h, co) is an acyclic relation. As by Lemma 4.4.4, Algorithm 5 requires
polynomial time, we conclude the result.

For showing NP-hardness, we reduce 3-SAT to the problem of checking consistency of a
partial observation history. Note that the problem is NP-hard in the case where the isolation
configuration is not saturable, as discussed in Section 4.4.3, using the results in [29]. Therefore,
we only prove it for the case where the isolation configuration is saturable.

Let φ =
∧n

i=1Ci a CNF expression with at most 3 literals per clause (i.e. Ci = l1i ∨ l2i ∨ l3i ).
Without loss of generality we can assume that each clause contains exactly three literals and
each literal in a clause refers to a different variable. We denote var(lji ) to the variable that
the literal lji employs and Vars(φ) the set of all variables of φ.

We design a history hφ with an arbitrary saturable isolation configuration encoding
φ. Thus, checking φ-satisfiability would reduce to checking hφ’s consistency. Note that
as iso(hφ) is saturable, hφ’s consistency is equivalent to checking pco’s acyclicity; where
pco = saturate(hφ, (so∪wr)+). We use the latter characterization of consistency for encod-
ing the formula φ in hφ.

First of all, we consider every literal in φ independently. This means that even if two
literals lji and lj

′

i′ share its variable (var(lji ) = var(lj
′

i′ )) we will reason independently about
them. For that, we employ keys var(lji )i and var(lj

′

i′ )i′ . We later enforce additional constraints
for ensuring that var(lji )i and var(lj

′

i′ )i′ coordinate so assignments on var(lji )i coincide with
assignments in var(lj

′

i′ )i′ . For simplicity in the explanation, whenever we talk about a literal
l that is negated (for example l := ¬x), we denote by ¬l to the literal x. Also, we use indis-
tinguishably x when referring to a variable in φ or to a homonymous key in hφ. In addition,
with the aim of simplifying the explanation, we assume hereinafter that any occurrence of
indices i, i′, j, j′ satisfy that 1 ≤ i, i′ ≤ n and 1 ≤ j, j′ ≤ 3.
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INSERT({var(li)+(i,1) : 1})
. . .
INSERT({var(li)+(i,i−1) : 1})
INSERT({var(li)+(i,i+1) : 1})
. . .
INSERT({var(li)+(i,n) : 1})
INSERT({var(li)−(1,i) : 1})
. . .
INSERT({var(li)−(i−1,i) : 1})
INSERT({var(li)−(i+1,i) : 1})
. . .
INSERT({var(li)−(n,i) : 1})
INSERT({var(cji ) : 1})
DELETE(λr : key(r) = var(lji )i)

(a) Transaction tji

INSERT({var(li)−(i,1) : 1})
. . .
INSERT({var(li)−(i,i−1) : 1})
INSERT({var(li)−(i,i+1) : 1})
. . .
INSERT({var(li)−(i,n) : 1})
INSERT({var(li)+(1,i) : 1})
. . .
INSERT({var(li)+(i−1,i) : 1})
INSERT({var(li)+(i+1,i) : 1})
. . .
INSERT({var(li)+(n,i) : 1})
INSERT({var(cji ) : 1})
INSERT({var(cj−1 mod 3

i ) : 1})
DELETE(λr : key(r) = var(lji )i)

(b) Transaction ¬tji

INSERT({x ∈ A
j
i : 0})

SELECT(λr : true)

(c) Transaction Sj
i

Figure 4.8: Description in full detail of the transactions tji , ¬t
j
i and Sj

i described in the proof
of theorem 4.4.20 assuming sign(tji ) = +; where A

j
i is the set of auxiliary variables for Sj

i .
The case where sign(tji ) = − is analogous replacing in the first two instructions of both tji
and ¬tji + by − and vice versa.

For every clause Ci = l1i ∨ l2i ∨ l3i , we create nine transactions denoted by tji , ¬t
j
i and Sj

i .
Figure 4.8 shows in detail their definition, which we explain and justify during the following
lines. The transaction tji represents the state where lji is satisfied while ¬tji represents the state
where lji is unsatisfied. Transaction Sj

i is in charge of selecting one of the two states. With
this goal on mind, transactions tji and ¬tji contain a DELETE event that deletes the key var(lji )i
while Sj

i contains a SELECT event that does not read var(lji )i in hφ. By Definition 4.4.19, any
witnesses h′ of hφ must read var(lji )i from a transaction that deletes it. As hφ contain only
two transactions that deletes such key (tji and ¬tji ), we can interpret that if Sj

i reads var(lji )i
from tji in h′, then lji is satisfied in φ while otherwise it is not.

For simplifying notation, as transactions tji ,¬t
j
i , S

j
i only have one read event, we define

write-read dependencies directly from transactions instead of their read events. We also denote
by var(tji ) and var(¬tji ) to the variable var(lji ), associating each transaction with the variable
of its associated literal.

We divide the construction of the history hφ in two main parts. In the first part, we
relate transactions tji ,¬t

j
i and Sj

i with the clause Ci, ensuring a satisfying valuation of clause
Ci corresponds to a consistent history when restricted to its associated transactions. In the
second part, we link transactions associated to different clauses (for example tji with tj

′

i′ , i ̸= i′),
for ensuring that valuations are consistent between clauses (i.e. a variable is not assigned 1
in clause Ci and 0 in clause Ci′).

For the first part of hφ’s construction, we observe that “at least one literal among l1i , l
2
i

or l3i must be satisfied” is equivalent to “¬l1i , ¬l2i and ¬l3i cannot be satisfied at the same
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Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3i

wrxi

wryi

wrzi

co

co

co

(a) No co-cycle when all
literals are satisfied.

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzi
co

co

co

(b) No co-cycle when
two literals are satisfied

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzi
co

co

co

(c) No co-cycle when one
literal is satisfied

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzicoco

co

(d) A co-cycle when no
literal is satisfied

Figure 4.9: Transformation of the clause Ci = xi ∨ yi ∨ ¬zi into part of the history. Solid
wr-edges in hφ represent the constraints of the clause while dashed wr-edges, belonging only
to the witnesses of hφ, reflect the literals satisfied.

time”. Thus, we add write-read dependencies to the history in such a way that if the three
values that do not satisfy the clause are read by a witness h′ of hφ, axiom Read Committed
forces h′ to be inconsistent. We use an auxiliary key cji written by transactions tji , ¬t

j
i and

¬t(j+1) mod 3
i and read by transaction Sj

i ; enforcing (¬t(j+1) mod 3
i , Sj

i ) ∈ wr
cji

. Thanks to

variable cji , if (¬tji , S
j
i ) ∈ wr

var(lji )i
in such witness h′, for any consistent execution of h′ with

commit order co, (¬tji ,¬t
j+1 mod 3
i ) ∈ co. Hence, if h′ is consistent, for every i there must

exist a j s.t.(tji , S
j
i ) ∈ wr

var(lji )i
. Otherwise, every commit order witnessing h′’s consistency

would be cyclic; which is a contradiction.
In Figure 4.9 we see how such co-cycle arise on any commit order witnessing hφ’s consis-

tency; where φ contains the clause Ci = xi ∨ yi ∨ ¬zi.

sign(t) =



+ if t = tji ∧ l
j
i = var(lji )

− if t = tji ∧ l
j
i = ¬var(l

j
i )

− if t = ¬tji ∧ l
j
i = var(lji )

+ if t = ¬tji ∧ l
j
i = ¬var(l

j
i )

⊥ otherwise

opsign(t) =


+ if sign(t) = −
− if sign(t) = +
⊥ otherwise

(4.5)

For the second part of hφ’s construction, we utilize the functions sign and opsign de-
scribed in Equation 4.5. The function sign describes when a literal lji is positive (i.e.
lji = var(lji )) or negative (i.e. lji = ¬var(lji )). If lji is positive, it assigns to transaction
tji the symbol + and to ¬tji the symbol −; while if lji is negative, the opposite. Such symbol
is denoted the sign of a transaction. Hence, for each transaction ti s.t. sign(ti) ̸= ⊥ (i.e. ti
is either tji or ¬tji ), we introduce n− 1 INSERT events, one per key var(lji )

sign(ti)
(i,i′) , i′ ̸= i, that

write on that exact key.
The auxiliary keys var(lji )

sign(ti)
(i,i′) and var(lji )

opsign(ti)
(i,i′) are key to ensure consistency be-

tween clauses. Intuitively, if Sj
i reads var(lji )i from a positive transaction t in a consistent

execution of hφ, ξ = (h, co), and t′ is a negative transaction s.t. var(t) = var(t′), then
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¬t1
t1 . . .

¬ti−1
ti−1

¬ti ti
¬ti+1

ti+1

. . .
¬tn

tn

Sj
i

wr
x+
(1,i)

wr
x+
(i−1,i) wr

x+
(i+1,i)

wr
x+
(n,i)

wr
x−
(1,i)

wr
x−
(i−1,i)

wr
x−
(i+1,i)

wr
x−
(n,i)

wrxi

co

co

co
co

Figure 4.10: Commit edges between transactions of different sign associated to variable x =
var(lji ). Superindices j are omitted for legibility. For simplicity on the Figure, we assume
that sign(tk) = + and sign(¬tk) = −; the situation generalizes for any other setting. If Sj

i

would read xi from ti in a witness h′ of hφ (respectively ¬ti), for every i′ ̸= i (ti,¬ti′) ∈ co,
(resp. (¬ti, ti′) ∈ co).

(t, t′) ∈ co; where h is a witness of hφ. Hence, any other transaction Sj′

i′ must read var(lj
′

i′ )i′

also from a positive transaction in h; otherwise co would be cyclic, which is impossible as co
must be a total order. This phenomenon, that is depicted in Figure 4.10, ensures that var(lji )
is always read from transactions with the same sign. In conclusion, we can establish consistent
valuation of the variables of φ based on the write-read dependencies of the witnesses of hφ.

We introduce a succint final part on the construction of hφ for technical reasons. Indeed,
any witness of hφ ensures that wr−1

x is a total function for any x ∈ Keys. We impose a few
additional constraints on hφ so we can better characterize the witnesses of hφ. First, we
assume that there exists an initial transaction that inserts, for every key x, a dummy value
different from †x (for example 0). Then, we impose that tji and ¬tji read every key x from the
initial transaction. Finally, for the case of transactions Sj

i , we define the set of auxiliary keys
A
j
i that contain every key different from cji , var(l

j
i )i, var(l

j
i )

+
(i′,i) and var(lji )

−
(i′,i). We introduce

on Sj
i an INSERT event that writes every key in A

j
i with an abritrary value (for example, 0).

Hence, Sj
i reads every key in Aj

i from its own insert and no extra write-read dependency is
required.

With this technical addendum, we define hφ = (T, so,wr) as the conjunction of all transac-
tions and relations described above. In such case, the only information missing in hφ to be a
full history is wr−1

var(lji )i
(Sj

i ). We assume that no more variables than the ones aforementioned
belong to Keys.

The proof of NP-hardness goes as follows: first, we prove in Lemma 4.4.22 that hφ is
indeed a polynomial transformation of φ. Then, as iso(hφ) is saturable, by Theorem 4.4.5 we
observe that it suffices to prove that φ is satisfiable if and only there is a witness h of hφ s.t.
the relation pcoh = saturate(h, (so ∪ wr)+) is acyclic. For simplifying the reasoning when
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iso(hφ) has an arbitrary isolation configuration, we rely on Lemma 4.4.23 for reducing the
proof at the case when iso(hφ) = RC.

Hence, we prove on Lemma 4.4.27 that on one hand, whenever φ is satisfiable we can
construct a witness h of hφ based on such assignment for which pcoh is acyclic. For that, we
require Lemmas 4.4.24 to 4.4.26.

On the other hand, whenever there is a consistent witness h of hφ, we prove on
Lemma 4.4.28 that we can construct a satisfying assignment of φ based on the write-read
dependencies in h. In this case, we require once more Lemma 4.4.24.

Lemma 4.4.22. The history hφ has polynomial size on the length of φ.

Proof. Let φ a CNF with n clauses and 3 literals per clause. Then, as φ has 3n literals,
hφ employs 9n transactions plus one additional one (init). The number of keys, |Keys|,
is quadratic on n as transactions tji and ¬tji insert O(n) keys while Sj

i only insert keys
also inserted by other transactions. Moreover, the number of events in hφ, events(hφ) is in
O(|Keys|) = O(n2) as transactions tji ,¬t

j
i have one INSERT event per keys inserted (and they

insert O(n) keys) and one DELETE event and transactions Sj
i only have two events. In addition,

so ⊆ T × T and wr ⊆ Keys × events(hφ) × events(hφ); so their size is also polynomial on n.
Thus, hφ is a polynomial transformation of φ.

One caveat of hφ is that its isolation configuration is unknown. Lemma 4.4.23 express that,
in the particular case of hφ, all saturable isolation levels stronger than RC are equivalent (they
impose the same constraints). Hence, thereinafter we can assume without loss of generality
that iso(hφ) = RC.

Lemma 4.4.23. Under history hφ, iso(hφ) is equivalent to RC (i.e. iso(hφ) is both weaker
and stronger than RC).

Proof. Let h = (T, so,wr) be any witness of hφ and let hRC be the history that only differ with
h on its isolation configuration (iso(hRC) = RC instead of iso(h)). We prove that h and hRC are
simultaneously consistent or inconsistent.

As both iso(hφ) and RC are saturable, by Theorem 4.4.5, the proof is equivalent to prove
that pcoh and pcoRC are simultaneously cyclic or acyclic; where pcoh = saturate(h, (so ∪
wr)+) and pcoRC = saturate(hRC, (so ∪ wr)+). We prove that the two relations coincide,
which allow us to conclude the result.

We observe that as iso(h) is weaker than RC, pcoRC ⊆ pcoh. Thus, it suffices to prove
that pcoh ⊆ pcoRC. Let t, t′ be two transactions s.t. (t, t′) ∈ pcoh and let us prove that
(t, t′) ∈ pcoRC. As (so ∪ wr)+ ⊆ pcoRC; we can assume without loss of generality that (t, t′) ∈
pcoh \ (so ∪ wr)+. In such case, there exists r ∈ reads(h), x ∈ Keys and v ∈ vis(iso(h)(tr(r)))
s.t. t′ = wrx

−1(r) and v(pcoh)(t, r, x) holds in h. As iso(h) is saturable, (t, r) ∈ (so ∪ wr)+.
First, we note that tr(r) ̸= init as it does not contain any read event. As t′ is a (so∪wr)+-

predecessor of tr(r), and transactions Sj
i are (so ∪ wr)-maximal, t′ is not a Sj

i transaction; so
it must be a tji transaction. However, note that by construction of transactions tji , their only
(so ∪ wr)-predecessor is init. Thus, their only (so ∪ wr)-succesors can be transactions Sj′

i′ ;
transactions that do not have (so ∪ wr)-successors. In conclusion, if (t′, tr(r)) ∈ (so ∪ wr)+,
(t′, tr(r)) ∈ so ∪ wr, and therefore, (t′, r) ∈ (so ∪ wr); po∗.
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Lemma 4.4.24 states a characterization of all commit order cycles imposed by the axiom
RC that only relate the nine transactions associated to a clause in φ.

Lemma 4.4.24. Let h = (T, so,wr) a witness of hφ. For a fixed i, there is a pcoh-cycle relating
init, tji ,¬t

j
i and Sj

i , 1 ≤ j ≤ 3 in h if and only if for all 1 ≤ j ≤ 3, (¬tji , S
j
i ) ∈ wr

var(lji )
in h.

Proof. A graphical description of the different cases of this proof can be seen in Figure 4.9.
⇐=
Let us suppose that for every j, 1 ≤ j ≤ 3, (¬tji , S

j
i ) ∈ wr

var(lji )i
. As ¬tji writes cji and

(¬t(j+1) mod 3
i , Sj

i ) ∈ wr
cji

, by axiom RC we deduce that, (¬tji ,¬t
(j+1) mod 3
i ) ∈ pcoh. Therefore,

there is a pcoh-cycle between transactions ¬t1i ,¬t2i and ¬t3i .
=⇒
First, note that so∪wr is acyclic, so any pcoh-cycle has to include at least one pcoh \ (so∪

wr)+-dependency. Hence, let t, t′ be distinct transactions such that (t′, t) ∈ pcoh \ (so ∪ wr)+

is an edge belonging to such cycle. By axiom Read Committed, this implies that there exists
a read event r and a key x s.t. (t, r) ∈ wrx and (t, r) ∈ (so∪wr); po∗. Note that in particular
this means that t′ and t are two distinct (so ∪ wr)-succesors of tr(r).

We observe that tr(r) ̸= init as init does not contain any read event. Moreover, tr(r) ̸=
tji ,¬t

j
i as those transactions have only one (so ∪ wr)-predecessor, init. Hence, there exists j

s.t. tr(r) = Sj
i . In this case, every ke written by tji or ¬tji besides cji and var(lji )i is read by

Sj
i from the INSERT event in its own transaction. We distinguish between two cases:

• x = var(lji )i: The only transactions that write var(lji )i are tji , ¬t
j
i , init and transactions

Sj′

i′ . However, transactions Sj′

i′ have only one (so ∪ wr)-succesor, init in hφ. As ∀x ̸=
var(lji )i,wrx

−1(Sj
i ) = wrx

−1(Sj
i ), one of them, init must be either t or t′. However,

t ̸= init as init does not delete var(lji )i; so t = init. But in such case, (t′, t) ∈ so;
which contradicts that (t′, t) ∈ pcoh\(so∪wr)+. This proves that this case is impossible.

• x = cji : In such case, as (¬tj+1 mod 3
i , Sj

i ) ∈ wr
cji

, t = ¬tj+1 mod 3
i . The only transactions

that writes cji and are (so∪wr)-predecessors of Sj
i are init, tji and ¬tji . As (init, t) ∈ so;

t ̸= init. Thus, any of the other two transactions are candidates to be t′. Note that
(t′, t) ∈ pcoh is part of a cycle; so let t′′ be a transaction s.t. (t′′, t′) ∈ pcoh.

If (t′′, t′) ∈ (so∪wr) would hold, as for every key x, wrx−1(t) = wrx
−1(t), t′′ = init. As

(t′, t) is part of a pcoh cycle and t ̸= init, there must exist a transaction t′′′ ̸= t′′ = init
s.t. (t′′′, t′′) ∈ pcoh is part of such cycle. Note that (t′′′, init) ∈ pcoh \ (so ∪ wr) by
construction of hφ. Hence, there exists a key y and a read event r′ s.t. (init, r′) ∈ wry
and (t′′′, r′) ∈ (so ∪ wr); po∗. By construction of hφ, if (init, r′) ∈ wry then tr(r′)

must be tj
′

i for some j′. But as we mentioned earlier, such transactions only have one
(so ∪ wr)-predecessor, init; so it is impossible that (t′′, t′) ∈ (so ∪ wr).

Hence, (t′′, t′) ∈ pcoh \ (so ∪ wr). Replicating the same argument as before we can
deduce that there exists a j′ s.t. (t′′, Sj′

i ) ∈ wr
cj

′
i

, t′ = ¬tj′+1 mod 3
i and t′′ is either tj

′

i or
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¬tj′i . However, as discussed before, t′ could only be ¬tji or tji . Therefore, t′ = ¬tji and
j = j′ + 1 mod 3.

Finally, as t′′ ̸= t, there must exist a transaction t′′′ s.t. (t′′′, t′′) ∈ pcoh. By the same
argument once more, there exists an index j′′ s.t. t′′ = ¬tj′′+1 mod 3

i , (t′′′, Sj′′

i ) ∈ wr
cj

′′
i

and t′′′ is either tj
′′

i or ¬tj′′i . Once more, as t′′ could only be ¬tj′i or tj
′

i , we deduce
that j′ = j′′ + 1 mod 3 and t′′ = ¬tj′i . Note that in this case j = j′′ + 2 mod 3. Thus,
t = ¬tj+1 mod 3

i = ¬tj′′i = t′′′. In conclusion, if such cycle exists it contain exactly the
transactions ¬t1i ,¬t2i and ¬t3i and for each of them, (¬tji , S

j
i ) ∈ wr

var(lji )i
.

Lemma 4.4.25 states that any pcoh-dependencies imposed by the axiom RC on transactions
t, t′ associated to diferent clauses in φ are related to valuation choices of literals in φ.

Lemma 4.4.25. Let h = (T, so,wr) a witness of the history hφ. For every pair of transactions
t, t′ and indices i, j, if var(t) = var(t′), t′ deletes var(lji )i, t ̸= ¬t

j+1 mod 3
i and (t′, t) ∈

pcoh \ (so ∪ wr)+ in h, then (t′, Sj
i ) ∈ wr

var(lji )i
.

Proof. Let i, j be indices and t, t′ be distinct transactions such that t ̸= ¬tj+1 mod 3
i and

(t′, t) ∈ pcoh \ (so ∪ wr)+. Hence, (t′, t) ∈ pcoh \ (so ∪ wr)+, by axiom Read Committed, there
must exist a key x and a read event r s.t. (t, r) ∈ wrx, t′ writes x and (t′, r) ∈ (so ∪ wr); po∗.
We characterize the possible candidates of transactions t, t′, tr(r) and key x.

First, as tr(r) has two different (so ∪ wr)-predecessors, tr(r) ̸= init, tj
′

i′ ; for any indices
i′, j′. Hence, there must exist indices i′, j′ s.t. tr(r) = Sj′

i′ .
Next we deduce that t and t′ belongs to different clauses. As t′ deletes var(lji )i, we deduce

that t′ is either tji or ¬tji . Hence, as t ̸= ¬tj+1 mod 3
i , neither tji nor ¬tji are (so∪wr)-predecessors

of Sj
i but both t and t′ are (so ∪ wr)-predecessors of Sj

i , we then deduce that t and t′ belong
to different clauses.

Finally, we deduce that i′ = i and (t′, Sj
i ) ∈ wr

var(lji )i
. As x is written by t and t′ and

x ̸∈ A
j′

i′ ; either t or t′ are associated to the same clause as Sj′

i′ . If t would be associated to
clause Ci′ , then t should be either tj

′

i′ or ¬tj′i′ and x = var(lj
′

i′ )i′ . However, this contradicts
that t′ writes var(lj

′

i′ )i′ as t′ is either tji or ¬tji . Hence, as t is not associated to clause Ci′ ,
i′ = i. As (t′, Sj

i ) ̸∈ (so ∪ wr) but (t′, Sj
i ) ∈ (so ∪ wr) and wry = wry for any key y ̸= var(lji )i,

we conclude that (t′, Sj
i ) ∈ wr

var(lji )i
.

Lemma 4.4.26 states that pcoh does not contain tuples of transactions associated to literals
with equal variable and sign.

Lemma 4.4.26. Let h = (T, so,wr) a witness of the history hφ. For every pair of transactions
t, t′ and indices i, j, if sign(t) = sign(t′), var(t) = var(t′) = var(lji ), (t, S

j
i ) ∈ wr

var(lji )i
and

t′ ̸= ¬tj−1 mod 3
i then (t′, t) ̸∈ pcoh \ (so ∪ wr)+.
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Proof. We reason by contradiction. Let us suppose that t, t′ are a pair of transactions such
that sign(t) = sign(t′), var(t) = var(t′) = var(lji ), (t, S

j
i ) ∈ wrvar(t)i , t

′ ̸= ¬tj−1 mod 3 and
(t′, t) ∈ pcoh \ (so ∪ wr)+, for some indices i, j. As (t, Sj

i ) ∈ wr
var(lji )i

, t is either tji or ¬tji .
Moreover, as (t′, t) ∈ pcoh \ (so∪wr)+, by axiom Read Committed we deduce that there exists
a key x and a read event r s.t. (t′, r) ∈ (so ∪ wr); po∗, (t, r) ∈ wrx and t′ writes x.

We first prove that t′ and t are associated to different clauses. As (init, t) ∈ so, t′ ̸= init.
Next, as (t′, r) ∈ (so∪wr); po∗ and transactions Sj′

i′ are so∪wr-maximal, we deduce that there
must exist a pair of indices i′, j′ s.t. t′ = tj

′

i′ or ¬tj′i′ . Moreover, as t′ ̸= ¬tj−1 mod 3
i , t is either

tji or ¬tji . In addition, as in any witness of hφ both tji and ¬tji cannot be (so∪wr)-predecessors
of Sj

i , we deduce that i′ ̸= i.
Finally we contradict the hypothesis proving that sign(t) ̸= sign(t′). If i′ ̸= i, t ̸= init

but t is a wr-predecessor of tr(r), there must exist indices i′′, j′′ s.t. tr(r) = Sj′′

i′′ . Hence, as
x ∈ A

j′′

i′′ and it is written by t and t′, i′′ must be either i′ or i. However, i′′ ̸= i as in that
case, x = var(lji )i and t′ does not write var(lji )i. Hence, i′′ = i′ ̸= i and x = var(lji )

sign(t′)
(i′,i) .

However, as t writes x, by construction of hφ, we must conclude that sign(t) ̸= sign(t′).
Thus, as we reached a contradiction, the lemma holds.

Lemma 4.4.27. For every boolean formula φ, if φ is satisfiable then there is a consistent
witness h of hφ.

Proof. Let α : Vars(φ) → {0, 1} an assignment that satisfies φ. Let hαφ = (T, so,wr) the
extension of hφ s.t. for every i, j, (tji , S

j
i ) ∈ wr

var(lji )i
if lji [α(var(l

j
i ))/var(l

j
i )] = true and

(¬tji , S
j
i ) ∈ wr

var(lji )i
otherwise. Note that for every two transactions t, t′ s.t. var(t) =

var(t′), α(var(t)) = α(var(t′)). Hence, if (t, Sj
i ) ∈ wrvar(t)i and (t′, Sj′

i′ ) ∈ wrvar(t′)i′ then
sign(t) = sign(t′). In addition, by construction of hφ, for every transaction Sj

i , the only
variable x such that wr−1

x (Sj
i ) ↑ is x = var(lji ). Thus, for every x ∈ Keys, wrx−1 is defined for

any read that does not read locally and therefore, hαφ is a full history that extends hφ.
Let us prove that hαφ is consistent. As mentioned before, thanks to Theorem 4.4.5, we

can reduce the problem of checking if hαφ is consistent to the problem of checking if pcohα
φ
=

saturate(hαφ, (so ∪ wr)+) is acyclic.
We reason by contradiction, assuming there is a pcohα

φ
-cycle and reaching a contradiction.

Clearly so ∪ wr is acyclic as so ∪ wr is acyclic, transactions Sj
i are (so ∪ wr)-maximal and

wr \ wr only contains tuples (tji , S
j
i ) or (¬tji , S

j
i ). Thus, any pcohα

φ
-cycle in hαφ contains at

least one edge (t′, t) ∈ pcohα
φ
\ (so∪wr)+; so let be t, t′ such a pair of distinct transactions s.t.

(t′, t) ∈ pcohα
φ
\ (so ∪ wr)+ and (t′, t) is part of the pcohα

φ
-cycle.

First, we observe that by construction of hφ, transactions Sj
i are (so ∪ wr)-maximal.

Moreover, they also pcohα
φ
-maximal: by contradiction, if there was a transaction uji s.t.

(Sj
i , u

j
i ) ∈ pcohα

φ
\ (so ∪ wr)+, by axiom Read Committed, there would be a variable a read

event r s.t. (Sj
i , r) ∈ (so∪wr); po∗; which is impossible. We also observe that init is not only

(so∪wr)-minimal but pcohα
φ
-minimal. By the same argument, if there would be a transaction
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u ̸= init s.t. (u, init) ∈ pcohα
φ
\(so∪wr)+, by axiom Read Committed, there should be a read

event r and a key x s.t. (init, r) ∈ wrx and (u′, r) ∈ (so∪wr); po∗. However, by construction
of hφ, the only transactions that read a variable from init are tji ; transactions with only one
(so ∪ wr)-predecessor. This shows that such transaction u does not exist. Altogether, the
pcohα

φ
-cycle can only contain pairs of transactions tji and ¬tji . In particular, as transactions

tji have only one (so ∪ wr)-predecessor, init, such pcohα
φ
-cycle is in pcohα

φ
\ (so ∪ wr)+.

Next, we note that, as every clause Ci is satisfied by α, there exists an index j s.t.
(tji , S

j
i ) ∈ var(lji ). By Lemma 4.4.24, we know there is no pcohα

φ
-cycle relating the nine

transactions associated with clause Ci and init. Therefore, a pcohα
φ
-cycle has to involve at

least two transactions from different clauses. Hence, we can assume without loss of generality
that t and t′ belong to the same clause.

As (t′, t) ∈ pcohα
φ
\ (so∪wr)+, there must exist a key x and a read event rx s.t. t writes x,

(t, rx) ∈ wrx and (t′, r) ∈ (so ∪ wr); po∗. By construction of hφ, the only case when two
transactions from different clauses write the same variable is when var(t) = var(t′). In
particular, as t and t′ belong to different clauses, there must exist indices i, i′ s.t. x =

var(t)
sign(t)
(i′,i) and tr(rx) = Sj

i . Hence, there is only one candidate for transaction t′: tji if

sign(tji ) = sign(t′) = opsign(t) and ¬tji otherwise. Therefore, as t′, tr(rx) belong to the
same clause and t′ is a (so ∪ wr)-predecessor of tr(rx), we conclude that (t′, Sj

i ) ∈ wrvar(t′)i .
To reach a contradiction, we find a pair of distinct transactions t̃, t̂ in the pcohα

φ
-cycle from

different clauses but associated to the same variable. First, as (t′, t) is part of the pcohα
φ
-cycle,

there exists a pcohα
φ
-predecessor of t′, t′′ s.t. (t′′, t′) ∈ pcohα

φ
is part of the pcohα

φ
-cycle. As

we mentioned before, (t′′, t′) ∈ pcohα
φ
\ (so ∪ wr)+. Then, there must exist a key y and a read

event ry s.t. t′′ writes y, (t′, ry) ∈ wry and (t′′, r) ∈ (so ∪ wr); po∗. Two cases arise:

• t′′ is not associated to clause i: In this case, as both t′, t′′ write variable y, by construc-
tion of hφ we observe that var(t′′) = var(t′). Thus, we denote t̃ = t′′ and t̂ = t′.

• t′′ is associated to clause i: In this case, t′′ ̸= ¬t′ as no transaction in h have both t′

and ¬t′ as (so ∪ wr)-predecessors. Hence, as no clause has two literals referring to the
same variable, var(t′) ̸= var(t′′). Thus, as t′′ and t′ have one common key, we deduce
that t′′ = ¬tj−1 mod 3

i and y = cj−1 mod 3
i . Thus, as (t′, r) ∈ wr

cj−1 mod 3
i

, we can conclude

that tr(ry) = Sj−1 mod 3
i and (t′′, Sj−1 mod 3

i ) ∈ wrvar(t′′)i . As t′′ ̸= t, there must exist a
transaction t′′′ s.t. (t′′′, t′′) ∈ pcohα

φ
belongs to the pcohα

φ
-cycle. Again, we observe two

cases:

– t′′′ is not associated to clause i: In this case, by an analogous argument, we observe
that var(t′′′) = var(t′′). Thus, we denote t̃ = t′′′ and t̂ = t′′.

– t′′′ is associated to clause i: By the same reasoning as before, t′′′ = ¬tj−2 mod 3
i and

(t′′′, Sj−2 mod 3
i ) ∈ wrvar(t′′′)i . Moreover, as t′′′ ̸= t, there must exist a transaction

t′′′′ s.t. (t′′′′, t′′′) ∈ pcohα
φ

belongs to the pcohα
φ
-cycle. Moreover, t′′′′ is not associ-

ated to clause i, as, once more, we would deduce that t′′′′ = ¬tj−3 mod 3
i and that

(t′′′′, Sj−3 mod 3
i ) ∈ wrvar(t′′′′)i ; which is impossible as by the construction of hαφ is
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satisfied. Hence, t′′′′ and t′′′ belong to different clauses and var(t′′′′) = var(t′′′).
We denote in this case t̃ = t′′′′ and t̂ = t′′′.

Finally, we reach a contradiction with the help of Lemmas 4.4.26 and 4.4.25. On one
hand, by the choice of transactions t̂ and t̃, we know that var(t̂) = var(t̃) and there exist
indices ĩ, j̃ s.t. t̃ deletes var(lj̃

ĩ
). Moreover, t̂ ̸= ¬t̃j̃+1 mod 3

ĩ
as they belong to different clauses.

Thus, as (t̃, t̂) ∈ pcohα
φ
\(so∪wr)+, by Lemma 4.4.25 we deduce that (t̃, S j̃

ĩ
) ∈ wrvar(t̃)i . On the

other hand, we also know that there exist indices î, ĵ s.t. t̂ is associated to the literal lĵ
î

and

(t̂, S ĵ

î
) ∈ wrvar(t)̂i . Hence, by construction of hαφ, as var(t̂) = var(t̃), (t̃, S j̃

ĩ
) ∈ wrvar(t̃)i and

(t̂,ĵ
î
) ∈ wrvar(t̂)̂i

, we deduce that sign(t̂) = sign(t̃). However, by Lemma 4.4.26, we deduce
that (t̃, t̂) ̸∈ pcohα

φ
\ (so∪wr)+. This contradicts that (t̃, t̂)hαφ is part of the pcohα

φ
-cycle. Thus,

the initial hypothesis, that pcohα
φ

is cyclic, is false. In conclusion, pcohα
φ

is acyclic, so hφ is
consistent as hαφ is a consistent witness of hφ.

Lemma 4.4.28. For every boolean formula φ, if there is a consistent witness of h, then φ is
satisfiable.

Proof. Let h = (T, so,wr) be a consistent witness of hφ. Hence, by Theorem 4.4.5, the
relation pcoh = saturate(h, (so∪wr)+) is acyclic. We use this fact to construct a satisfying
assignment of φ. Let us call uji to the transaction s.t. (uji , S

j
i ) ∈ wr

var(lji )i
. Note that by

construction of hφ, uji deletes var(lji )i, so uji is either tji or ¬tji .
We first prove that for every pair of pairs of indices i, i′, j, j′, if var(uji ) = var(uj

′

i′ )

then sign(uji ) = sign(uj
′

i′ ). By contradiction, let uji , u
j′

i′ be a pair of transactions s.t.
var(uji ) = var(uj

′

i′ ) and sign(uji ) ̸= sign(uj
′

i′ ). In such case, opsign(uji ) = sign(uj
′

i′ ). Thus,

both transactions write var(uji )
opsign(uj

i )

(i′,i) and var(uji )
sign(uj

i )

(i,i′) . By axiom Read Committed, as

(uj
′

i′ , S
j
i ) ∈ wr

var(uj
i )

opsign(u
j
i
)

(i′,i)

and (uji , S
j
i ) ∈ wr, we conclude that (uji , u

j′

i′ ) ∈ pcoh. By a sym-

metric argument using var(uji )
sign(uj

i )

(i,i′) we deduce that (uj
′

i′ , u
j
i ) ∈ pcoh. However, this is

impossible as pcoh is acylclic; so we conclude that indeed sign(uji ) = sign(uj
′

i′ ).
Next, we construct a map that assign at each variable in φ a value 0 or 1. Let αh :

Vars(φ)→ {0, 1} be the map that assigns for each variable var(lji ) the value 1 if sign(uji ) = +

and 0 if sign(uji ) = −. Note that this map is well defined as, by the previous paragraph, if
two literals lji , l

j′

i′ share variable, then their respective transactions uji , u
j′

i′ have the same sign.
Finally, we prove that φ is satisfied with this assignment. By construction of αh, for every

pair of indices i, j, lji [αh(var(l
j
i ))/var(l

j
i )] is true if and only if (tji , S

j
i ) ∈ wr

var(lji )
. Moreover,

as pcoh is acyclic, by Lemma 4.4.24, we know that for each i there exists a j s.t. uji ̸= ¬t
j
i .

Hence, for this j, uji must be tji as uji is either tji or ¬tji . Therefore, every clause is satisfied
using αh as assignment; so φ is satisfiable.
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4.5 Effectively Checking Consistency of Client Histories
The result of Theorem 4.4.8 implicitly asks whether there exist conditions on the histories
for which checking consistency remains polynomial as in [29]. We describe an algorithm for
checking consistency of client histories and identify cases in which it runs in polynomial time.

4.5.1 An Algorithm for Checking Consistency of Client Histories
Consider a client history h = (T, so,wr) which is consistent. For every consistent witness
h = (T, so,wr) of h there exists a consistent execution of h, ξ = (h, co). The commit order co
contains (so∪wr)+ and any other ordering constraint derived from axioms by observing that
(so ∪wr)+ ⊆ co. More generally, co includes all constraints generated by the least fixpoint of
the function saturate defined in Algorithm 5 when starting from (so∪wr)+ as partial commit
order. This least fixpoint exists because saturate is monotonic. It is computed as usual by
iterating saturate until the output does not change. We use FIX(λR : saturate(h,R))(so∪
wr)+ to denote this least fixpoint. In general, such a fixpoint computation is just an under-
approximation of co, and it is not enough for determining h’s consistency.

Algorithm 7 Checking consistency of client histories
1: function checkConsistency(h = (T, so,wr))
2: let pco = FIX(λR : saturate(h,R))(so ∪ wr)+

3: let Eh = {(r, x) | r ∈ reads(h), x ∈ Keys.wr−1
x (r) ↑ and 1xr (pco) ̸= ∅}

4: let Xh = the set of mappings that map each (r, x)∈Eh to a member of 0rx(pco)
5: if pco is cyclic then return false
6: else if there exists (r, x) ∈ Eh such that 0rx(pco) = ∅ then return false
7: else if Eh = ∅ then return exploreConsistentPrefixes(h, ∅)
8: else
9: for all f ∈ Xh do

10: seen← ∅; h′ ← h
⊕

(r,x)∈Eh
wrx(f(r, x), r)

11: if exploreConsistentPrefixes(h′, ∅) then return true

12: return false

The algorithm we propose, described in Algorithm 7, exploits the partial commit order
pco obtained by such a fixpoint computation (line 2) for determining h’s consistency. For
a read r, key x, we define 1rx(pco), resp., 0rx(pco), to be the set of transactions that are
not committed after tr(r) and which write a value that satisfies, resp., does not satisfy, the
predicate WHERE(r). The formal description of both sets can be seen in Equation 4.6.

1rx(pco) = {t ∈ T | (tr(r), t) ̸∈ pco ∧ WHERE(r)(valuewr(t, x)) = 1}
0rx(pco) = {t ∈ T | (tr(r), t) ̸∈ pco ∧ WHERE(r)(valuewr(t, x)) = 0} (4.6)

The set 0rx(pco) can be used to identify extensions that are not witness of a history. Let
us consider the client history h depicted in Figure 4.11a. Observe that t3 is not reading
x1 and t5 is not reading x2. Table 4.11b describes all possible full extensions h of h. An
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INSERT({x1 : 0, x2 : 0, x3 : 0, x4 : 0})
init

INSERT({x2 : −1, x3 : 1})
t1

INSERT({x1 : 2, x4 : −2})
t2

SELECT(λr : r < 0)
INSERT({x2 : −3})

t3

INSERT({x4 : 4})
t4

SELECT(λr : r ≥ 0)
INSERT({x1 : 5, x3 : −5})

t5

soso

soso

so

wrx3

wrx2

wrx1

wrx3

wrx4

wrx4

(a) A history where t3, t5 have PC and SER as isolation
levels respectively. The isolation levels of the other trans-
actions are unspecified.

History wr−1
x1

(t3) wr−1
x2

(t5)

h1 init init
h2 init t1
h3 init t3
h4 t2 init
h5 t2 t1
h6 t2 t3
h7 t5 init
h8 t5 t1
h9 t5 t3

(b) Table describing all possible full exten-
sions of the history in Figure 4.11a.

History wr−1
x1

(t3) wr−1
x2

(t5)

h258 undef t1

(c) Table describing the only conflict-free
extension of Figure 4.11a.

Figure 4.11: Comparison between conflict-free extensions and full extensions of the history h
in Figure 4.11a. In h, wr−1 is not defined for two pairs: (t3, x1) and (t5, x2); where we identify
the single SELECT event in a transaction with its transaction. Table 4.11b describes all possible
full extensions of h. For example, the first extension, h1, states that (init, t3) ∈ wrx1 and
(init, t5) ∈ wrx2 . Algorithm 7 only explore the only extension h258 described in Table 4.11c;
where wr−1

x1
(t3) ↑ and (t1, t5) ∈ wrx2 . The history h258 can be extended to histories h2, h5 and

h8.

execution ξ = (h, co) is consistent if (t, r) ∈ wrx \ wrx implies WHERE(r)(valuewr(t, x)) = 0.
This implies that extensions h1, h4, and h7, where (init, t5) ∈ wrx2 , are not witnesses of h
as WHERE(t5)(valuewr(init, x2)) = 1. We note that init ̸∈ 0t5x2

(pco) = {t1}. Also, observe
that (t5, t3) ∈ wr; so extensions h3, h6 and h9, where (t3, t5) ∈ wrx2 , are not a witness of h.
Once again, t3 ̸∈ 0t5x2

(pco). In general, for every read event r and key x s.t. wr−1
x (r) ↑, the

extension of h where (t, r) ∈ wrx, t ̸∈ 0rx(pco), is not a witness of h. In particular, if wr−1
x (r) ↑

but 0rx(pco) = ∅, then no witness of h can exist.
The sets 0rx(pco) are not sufficient to determine if a witness is a consistent witness as our

previous example shows: 0t3x1
(pco) = {init, t2, t5}, but h2 is not consistent.

Algorithm 7, combines an enumeration of history extensions with a search for a consistent
execution of each extension. The extensions are not necessarily full.

In case wr−1
x (r) is undefined, we use sets 1rx(pco) to decide whether the extension of h

requires specifying wr−1
x (r) for determining h’s consistency. Algorithm 7 specifies wr−1

x (r)
only if (r, x) is a so-called conflict, i.e., wr−1

x (r) is undefined and 1rx(pco) ̸= ∅.
Following the example of Figure 4.11, we observe that 1t3x1

(pco) = ∅, all transactions that
write on x1 write non-negative values; but instead 1t5x2

(pco) = {init}. Intuitively, this means
that if some extension h′ that does not specify wr−1

x1
(t3) does not violate any axiom when using

some commit order co, then we can extend h′, defining wr−1
x1

(t3) as some adequate transaction,
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and obtain a full history h s.t. the execution ξ = (h, co) is consistent. On the other hand,
specifying the write-read dependency of t5 on x2 matters. For not contradicting any axiom
using co, we may require (init, t5) ∈ wrx2 . However, such extension is not even a witness of
h as WHERE(init)(valuewr(init, x2)) = 1. This intuition holds for the isolation levels that
Algorithm 7 considers.

A history is conflict-free if it does not have conflicts. Our previous discussion reduces
the problem of checking consistency of a history to checking consistency of its conflict-free
extensions. For example, the history h in Figure 4.11a is not conflict-free but the extension
h258 defined in Table 4.11c is. Instead of checking consistency of the nine possible extensions,
we only check consistency of h258.

Algorithm 7 starts by checking if there is at least a conflict-free extension of h (line 6).
If h is conflict-free, it directly calls Algorithm 8 (line 7); while otherwise, it iterates over
conflict-free extensions of h, calling Algorithm 8 on each of them (line 11).

Algorithm 8 check consistency of conflict-free histories
1: function exploreConsistentPrefixes(h = (T, so,wr), P )
2: if |P | = |T | then return true

3: for all t ∈ T \ P s.t. P ▷t (P ∪ {t}) do
4: if ∃P ′ ∈ seen s.t. P ′ ≡iso(h) (P ∪ {t}) then continue
5: else if exploreConsistentPrefixes(h, P ∪ {t}) then return true
6: else seen← seen ∪ (P ∪ {t})
7: return false

Algorithm 8 describes the search for the commit order of a conflict-free history h. This
is a recursive enumeration of consistent prefixes of histories that backtracks when detecting
inconsistency (it generalizes Algorithm 2 in [29]). A prefix of a history h = (T, so,wr) is a
tuple P = (TP ,MP ) where TP ⊆ T is a set of transactions and MP : Keys→ TP is a mapping
s.t. (1) so predecessors of transactions in TP are also in TP , i.e., ∀t ∈ TP . so−1(t) ∈ TP and
(2) for every x, MP (x) is a so-maximal transaction in TP that writes x (MP records a last
write for every key).

For every prefix P = (TP ,MP ) of a history h and a transaction t ∈ T \TP , we say a prefix
P ′ = (TP ′ ,MP ′) of h is an extension of P using t if TP ′ = TP ∪ {t} and for every key x,
MP ′(x) is t or MP (x). Algorithm 8 extensions, denoted as P ∪ {t}, guarantee that for every
key x, if t writes x, then MP ′(x) = t.

Extending the prefix P using t means that any transaction t′ ∈ TP is committed before t.
Algorithm 8 focuses on special extensions that lead to commit orders of consistent executions.

Definition 4.5.1. Let h be a history, P = (TP ,MP ) be a prefix of h, t a transaction that is
not in TP and P ′ = (TP ′ ,MP ′) be an exetension of P using t. The prefix P ′ is a consistent
extension of P with t, denoted by P ▷t P

′, if

1. P is pco-closed: for every transaction t′ ∈ TP s.t. (t′, t) ∈ pco then t′ ∈ TP ,

2. t does not overwrite other transactions in P : for every read event r outside of the prefix,
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Axiom Predicate
Serializability, Prefix, ∄x ∈ Keys s.t. t writes x, wr−1

x (r) ↓
Read Atomic, Read Committed v(pcoPt )(t, r, x) holds in h and wr−1

x (r) ∈ TP
Conflict ∄x ∈ Keys, t′ ∈ TP ∪ {t} s.t. t′ writes x, wr−1

x (r) ↓
v(pcoPt )(t

′, r, x) holds in h and wr−1
x (r) ̸=MP (x)

Table 4.1: Predicates relating prefixes and visibility relations where pcoPt is defined as pco ∪
{(t′, t) | t′ ∈ TP } ∪ {(t, t′′) | t′′ ∈ T \ (TP ∪ {t})}.

INSERT({x1 : 0, x2 : 0, x3 : 0, x4 : 0})
init

INSERT({x2 : −1, x3 : 1})
t1

INSERT({x1 : 2, x4 : 2})
t2

SELECT(λr : r < 0)
INSERT({x2 : −3})

t3

INSERT({x4 : 4})
t4

SELECT(λr : r ≥ 0)
INSERT({x1 : 5, x3 : −5})

t5

soso

soso

so

wrx2,x3

wrx1

wrx2

wrx3

wrx4

wrx4

(a) Conflict-free history corresponding to the extension
h258 (Table 4.11c) of the history in Figure 4.11a

∅

⟨t1⟩

⟨t2⟩ ⟨t1, t4⟩

⟨t2, t4⟩ ⟨t1, t5⟩

⟨t2, t5⟩

⟨t3, t5⟩

a

b

(b) Execution of Algorithm 7 on the history
in Figure 4.12a.

Figure 4.12: Applying Algorithm 8 on the conflict-free consistent history h258 on the left.
The right part pictures a search for valid extensions of consistent prefixes on h258. Prefixes
are represented by their so-maximal transactions, e.g., ⟨t2⟩ contains all transactions which are
before t2 in so, i.e., {init, t1, t2}. A red arrow means that the search is blocked (the prefix at
the target is not a consistent extension), while a blue arrow mean that the search continues.

i.e., tr(r) ∈ T \ TP ′ and every visibility relation v ∈ vis(iso(h))(tr(r)), the predicate
vpPv (t, r) defined in Table 4.1 holds in h.

We say that a prefix is consistent if it is either the empty prefix or it is a consistent
extension of a consistent prefix.

Figure 4.12b depicts the execution of Algorithm 8 on the conflict-free history Figure 4.12a
(history h258 from Table 4.11c). Blocked and effectuated calls are represented by read and
blue arrows respectively. The read arrow a is due to condition 1 in Definition 4.5.1: as t3
enforces PC, reads x4 from t2, and t4 is visible to it (visPrefix(t4, t3, x4)), (t4, t2) ∈ pco; so
consistent prefixes can not contain t2 if they do not contain t4. The read arrow b is due to
condition 2: as t5 enforces SER and it reads x4 from t4, consistent prefixes can not contain
t2 unless t5 is included. When reaching prefix ⟨t3, t5⟩, the search terminates and deduces
that h is consistent. From the commit order induced by the search tree we can construct the
extension of h where missing write-read dependencies are obtained by applying the axioms
on such a commit order. In our case, from init <co t1 <co t4 <co t5 <co t2 <co t3, we deduce
that the execution ξ = (h5, co) is a consistent execution of h258, and hence of h; where h5 is
the history described in Table 4.11b.
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For complexity optimizations (see Section 4.5.2), Algorithm 8 requires an isolation level-
dependent equivalence relation between consistent prefixes. If there is transaction t ∈ T s.t.
iso(h)(t) = SI, prefixes P = (TP ,MP ) and P ′ = (TP ′ ,MP ′) are equivalent iff they are equal
(i.e. TP = TP ′ ,MP =MP ′). Otherwise, they are equivalent iff TP = TP ′ .

Theorem 4.5.2. Let h be a client history whose isolation configuration is defined using
{SER, SI, PC, RA, RC}. Algorithm 7 returns true if and only if h is consistent.

The proof of Theorem 4.5.2 is a consequence of Lemmas 4.5.4 and 4.5.7.

Lemma 4.5.3. Let h = (T, so,wr) be a client history, P = (TP ,MP ) be a consistent prefix
of h and t ∈ T \ TP . If (P ∪ {t}) ∈ seen then exploreConsistentPrefixes(h, P ∪ {t})
returns false.

Proof. If (P ∪{t}) ∈ seen, then P ∪{t} has been to seen added at line 6 of Algorithm 8. To
execute such instruction, the condition at line 4, exploreConsistentPrefixes(h, P ∪{t})
returns true, does not hold; which let us conclude the result.

Lemma 4.5.4. Let h = (T, so,wr) be a client history whose isolation configuration is stronger
than RC. If h is consistent, Algorithm 7 returns true.

Proof. Let h be a consistent history that satisfies the hypothesis of the Lemma. As h is
consistent, let h = (T, so,wr) be a witness of h and let ξ = (h, co) be a consistent execution of
h. We first reduce the problem to prove that Algorithm 8 returns true on a particular witness
of h, a history ĥ s.t. h ⊆ ĥ ⊆ h.

First, let pco, Eh and Xh be defined as in Algorithm 7 at lines 2-4. As h is consistent, for
every read event r and a variable x s.t. wr−1

x (r) ↑, wr−1
x (r) ↓ and WHERE(r)(valuewr(t

r
x, x)) =

0; where trx = wr−1
x (r).

On one hand, if Eh is empty, Xh is empty as well. In such case, we denote ĥ = h. On
the other hand, if Eh ̸= ∅, for every (r, x) ∈ Eh we know that the transaction trx belongs to
0rx. Therefore, Xh ̸= ∅. Thus, let f be the map that assigns for every pair (r, x) ∈ Eh the
transaction trx; and let ĥ = (T, so, ŵr) be the history s.t. ĥ = h

⊕
(r,x)∈Eh

wrx(f(r, x), r).
We observe that the fact that ĥ is a history and h witnesses ĥ’s consistency using co
is immediate as wr ⊆ ŵr ⊆ wr. Note that in both cases, the condition at line 6 does
not hold. Therefore, to prove that Algorithm 7 returns true it suffices to prove that
exploreConsistentPrefixes(ĥ, ∅) returns true.

We define an inductive sequence of prefixes based on co and show that they represent
recursive calls to Algorithm 8. As a base case, let P0 be the prefix with only init as trans-
action. Assuming that for every j, 0 ≤ j ≤ i, Pi is defined, let Pi+1 = Pi ∪ {ti}; where ti
is the i-th transaction of T according to co. By construction of co, pco ⊆ co. Hence, Prop-
erty 1 immediately holds. Moreover, as co witnesses h’s consistency, Property 2 also holds;
so Pi ▷ti+1 Pi+1.

We conclude showing by induction on the number of transactions that are not in the prefix
that for every i, 0 ≤ i ≤ |T |, exploreConsistentPrefixes(ĥ, Pi) returns true.

• Base case: The base case is i = |T |. In such case, P|T | contains all transactions in T .
Therefore, the condition at line 2 in Algorithm 8 holds and the algorithm returns true.
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• Inductive case: The inductive hypothesis guarantees that for every k, i ≤ k ≤ |T |, ex-
ploreConsistentPrefixes(ĥ, Pi) returns true and we show that exploreConsis-
tentPrefixes(ĥ, Pi−1) also returns true. By definition of Pi, TPi = TPi−1∪{ti}. In par-
ticular, |Pi| ≠ |T | and Pi−1 ▷ti+1 Pi. In addition, by induction hypothesis, we know that
exploreConsistentPrefixes(ĥ, Pi) returns true. Hence, by Lemma 4.5.3, Pi ̸∈ seen.
Altogether, we deduce that exploreConsistentPrefixes(ĥ, Pi−1) returns true.

Lemma 4.5.5. Let ĥ = (T, so, ŵr) be a client history and P = (TP ,MP ) be a consistent
prefix. If exploreConsistentPrefixes(ĥ, P ) returns true, there exist distinct transactions
ti ∈ T TP and a collection of consistent prefixes Pi = (TP ,MP ) s.t. Pi = Pi−1∪{ti}, Pi−1▷tiPi

and exploreConsistentPrefixes(ĥ, Pi) returns true; where |TP | < i ≤ |T | and P|TP | = P .

Proof. Let ĥ be a client history and P = (TP ,MP ) be a consistent prefix s.t. explore-
ConsistentPrefixes(ĥ, P ) returns true. We prove the result by induction on the number
of transactions not present in TP . The base case, when |TP | = |T |, immediately holds as
T \ TP = ∅. Let us assume that the inductive hypothesis holds for any prefix containing k
transactions and let us show that it also holds for every consistent prefix with k − 1 trans-
actions. Let us thus assume that |TP | = k − 1. As exploreConsistentPrefixes(ĥ, P )
returns true, it must reach line 5 in Algorithm 8. Hence, there must exist a transaction
tk ∈ T \ TP s.t. P ▷tk (P ∪ {tk}) and exploreConsistentPrefixes(ĥ, P ∪ {tk}) returns
true. By induction hypothesis on P ∪ {tk} = (Tk,Mk), there exist a distinct transactions
ti ∈ T \ Tk and a collection consistent prefixes Pi s.t. Pi = Pi−1 ∪ {ti}, Pi−1 ▷ti Pi and
exploreConsistentPrefixes(ĥ, Pi) returns true; where k < i ≤ |T | and Pk = P ∪ {tk}.
Thus, the inductive step holds thanks to prefix Pk.

Lemma 4.5.6. Let h = (T, so,wr) be a client history and let pco be the relation defined
as at line 2 in Algorithm 8. If checkConsistency(h) returns true, there exists an exten-
sion ĥ = (T, so, ŵr) of h s.t. for every read event r, variable x and transaction t, (1) if
(t, r) ∈ ŵrx \wrx then t ∈ 0rx(pco), (2) if ŵr−1

x (r) ↑ then 1rx(pco) = ∅, and (3) exploreCon-
sistentPrefixes(ĥ, ∅) returns true.

Proof. Let h = (T, so,wr) be a client history s.t. checkConsistency(h) returns true and
let pco, Eh, Xh be the objects described in lines 2-4 in Algorithm 7. If there exists a pair
(r, x) ∈ Eh for which 0rx(pco) = ∅, checkConsistency(h) returns false. Hence, Eh is
empty if and only if Xh is empty. If Eh = ∅, Algorithm 7 executes line 7. Thus, taking
ĥ = h, conditions (1), (2) and (3) trivially hold. Otherwise, Algorithm 7 executes line 8.
Once again, as exploreConsistentPrefixes(h, ∅) returns true, there must exists f ∈ Xh

s.t. exploreConsistentPrefixes(ĥ, ∅) returns true; where ĥ =
⊕

(r,x)∈Eh
wrx(f(r, x), r).

Thanks to the definition of f and ĥ conditions (1), (2) and (3) are satisfied.

Lemma 4.5.7. Let h = (T, so,wr) be a client history whose isolation configuration is composed
of {SER, SI, PC, RC} isolation levels. If Algorithm 8 returns true, h is consistent.
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Proof. Let h = (T, so,wr) be a client history s.t. checkConsistency(h) returns true and
let pco, Eh and Xh be defined as at lines 2-4 in Algorithm 7. By Lemma 4.5.6, there exists
an extension of h ĥ = (T, so, ŵr) s.t. for every read event r, variable x and transaction
t, (1) if ŵr−1

x (r) ↑ then 1rx(pco) = ∅, (2) if (t, r) ∈ ŵrx \ wrx then t ∈ 0rx(pco) and (3)
exploreConsistentPrefixes(ĥ, ∅) returns true. By Lemma 4.5.5 applied on ĥ and ∅,
there exist distinct transactions ti ∈ T and a collection of prefixes of h, Pi = (Ti,Mi), s.t.
Pi = Pi−1 ∪ {ti}, Pi−1 ▷ti Pi and exploreConsistentPrefixes(ĥ, Pi) returns true; where
P0 = ∅ and 0 < i ≤ |T |. Let co be the total order based on the aforementioned transactions
ti, i.e. co = {(ti, tj) | i < j}. We construct a full history that extends ĥ employing co and
taking into account the isolation level of each transaction.

For every read event r, key x and visibility relation v ∈ vis(iso(h)(tr(r))), let tv, trx be the
transactions defined as follows:

txv = max
co
{t′ ∈ T | t′ writes x ∧ v(co)(t′, r, x)}
trx = max

co
{txv | v ∈ vis(iso(h)(tr(r)))} (4.7)

Note that if v is a visibility relation associated to an axiom from SER, SI, PC, RA and RC isolation
levels, transactions txv and trx are well-defined as v(init, r, x) holds. Thus, let wrx = ŵrx ∪
{(trx, r) | ŵr−1

x (r) ↑} and wr =
⋃

x∈Keys wrx. As wr−1
x is a total function and wr−1

x (r) writes x

we can conclude that h = (T, so,wr) is a full history.
We prove that h is also a witness of h. For that, we show that for every read event r,

every key x and every transaction t, if (t, r) ∈ wrx \wrx, t ∈ 0rx(pco). Two cases arise: (t, r) ∈
ŵrx \wrx and (t, r) ∈ wrx \ ŵrx. The first case is quite straightforward, as if (t, r) ∈ ŵrx \wrx,
by Property (1) of Lemma 4.5.6, t ∈ 0rx(pco). The second case, (t, r) ∈ wrx \ ŵrx, is slightly
more subtle. First, for every isolation level considered, if (t, r) ∈ wrx then (t, tr(r)) ∈ pco.
Next, as checkConsistency(h) returns true, the condition at line 5 does not hold. Hence, as
pco is acyclic, we deduce that (tr(r), t) ̸∈ pco. In addition, as (t, r) ∈ wrx \ ŵrx, ŵr−1

x (r) ↑. By
Property (2) of Lemma 4.5.6 employed during ĥ’s construction, we deduce that 1rx(pco) = ∅.
In conclusion, as (tr(r), t) ̸∈ pco and 1rx(pco) = ∅, we conclude that t ∈ 0rx(pco).

Finally, we prove that co witnesses that h is consistent. Let r be a read event, x be a
key and t1, t2 be transactions s.t. (t1, r) ∈ wrx and t2 writes x. We prove that if there exists
v ∈ vis(iso(h)(tr(r))) s.t. v(co)(t2, r, x) holds in h then (t2, t1) ∈ co; which by Definition 4.3.1,
we know it implies that h is consistent. Note that if (t1, r) ∈ wr \ ŵr, by definition of trx the
statement immediately holds; so we can assume without loss of generality that (t1, r) ∈ ŵrx.

First, we note that proving that whenever v(co)(t2, r, x) holds in h, then (t2, t1) ∈ co is
equivalent to prove that whenever v(co)(t2, r, x) holds in h, then t1 ̸∈ Ti−1; where i is the
index of the transaction in T s.t. t2 = ti.

For every i, 1 ≤ i ≤ |T | Pi−1 ▷ti Pi, so ∪ ŵr ⊆ co. Thus, by Definition 4.3.1, it suffices
to show that for every read event r, Ciso(h)(tr(r))(pco)(r) holds. For that, let ˆpco = FIX(λR :

saturate(ĥ,R))(so ∪ ŵr)+ be the partial commit order implied by ĥ.
As iso(h) is composed of {SER, SI, PC, RA, RC} isolation levels and Pi−1 ▷t2 Pi, by Property 2

of Definition 4.5.1, it suffices to prove that whenever v(co)(t2, r, x), if v ̸= Conflict then
v( ˆpcoPi

t2
)(t, r, x) holds in ĥ, while if v = Conflict, that there exists t′ ∈ Ti−1 s.t. v( ˆpcoPi

t2
)(t′, r, x)
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holds in ĥ; where ˆpcoPi
t2

is obtained by applying Table 4.1 on ˆpco. We analyze five different
cases:

• iso(h)(tr(r)) = SER: In this case, Serializability(co)(t2, r, x) holds in h if and only if
(t2, tr(r)) ∈ co. As ˆpcoPi

t2
totally orders t2 and every other transaction in T and

ˆpcoPi
t2
⊆ co, we deduce that (t2, tr(r)) ∈ ˆpcoPi

t2
. Hence, Serializability( ˆpcoPi

t2
)(t2, r, x)

holds in ĥ.

• iso(h)(tr(r)) = SI: Two disjoint sub-cases arise:

– Conflict(co)(t2, r, x) holds in h: This happens if and only if there exists a trans-
action t3 and a key y ∈ Keys s.t. t3 writes y, tr(r) writes y, (t2, t3) ∈ co∗ and
(t3, tr(r)) ∈ co. Let j be the index s.t. t3 = tj . Then, as ˆpco

Pj

t3
totally orders t3 and

every other transaction and ˆpco
Pj

t3
⊆ co, (t2, t3) ∈ ( ˆpco

Pj

t3
)∗ and (t3, tr(r)) ∈ ˆpco

Pj

t3
.

Thus, Conflict( ˆpco
Pj

t3
)(t2, r, x) holds in ĥ.

– Prefix(co)(t2, r, x) holds in h but Conflict(co)(t2, r, x) does not: We observe that
Prefix(co)(t2, r, x) holds in h if there exists a transaction t3 s.t. (t2, t3) ∈ co∗

and (t3, tr(r)) ∈ so∪wr. If (t3, tr(r)) ∈ wr \ (so∪ ŵr), by Equation (4.7) there exist
y ∈ Keys and v ∈ vis(SI) s.t. v(co)(t3, r, y) holds in ĥ. Note that v ̸= Conflict as
otherwise Conflict(co)(t2, r, x) would hold in h. Hence, v = Prefix and by transitiv-
ity of co, we conclude that Prefix(co)(t2, r, x) holds in ĥ. As ˆpcoPi

t2
totally orders

t2 with respect every other transaction in t2 and ˆpcoPi
t2
⊆ co, we conclude that

Prefix( ˆpcoPi
t2
)(t2, r, x) holds in ĥ.

• iso(h)(tr(r)) = PC: In this case, Prefix(co)(t2, r, x) holds in h if and only if there exists
a transaction t3 s.t. (t2, t3) ∈ co∗ and (t3, tr(r)) ∈ so ∪ wr. If (t3, tr(r)) ∈ wr \ (so ∪ ŵr),
by Equation (4.7) there exist y ∈ Keys and v ∈ vis(SI) s.t. v(co)(t3, r, y) holds in ĥ.
Hence, by transitivity of co, we conclude that Prefix(co)(t2, r, x) holds in ĥ. As ˆpcoPi

t2

totally orders t2 with respect every other transaction in t2 and ˆpcoPi
t2
⊆ co, we conclude

that Prefix( ˆpcoPi
t2
)(t2, r, x) holds in ĥ.

• iso(h)(tr(r)) = RA: In this case, Read Atomic(co)(t2, r, x) holds in h if and only if
(t2, tr(r)) ∈ so ∪ wr. We observe that by Equation (4.7), if (t2, tr(r)) ∈ wr \ (so ∪ ŵr),
then t2 = trx and Read Atomic( ˆpcoPi

t2
)(t2, r, x) holds in ĥ. Hence, (t2, tr(r)) ∈ so ∪ ŵr;

which is a contradiction. Thus, as (t2, tr(r)) ∈ so∪ŵr, Read Atomic( ˆpcoPi
t2
)(t2, r, x) holds

in ĥ.

• iso(h)(tr(r)) = RC: Similarly to the previous case, we observe that the formula
Read Committed(co)(t2, r, x) holds in h iff (t2, tr(r)) ∈ (so ∪ wr); po∗. We observe
that by Equation (4.7), if (t2, tr(r)) ∈ wr \ (so ∪ ŵr); po∗, then t2 = trx and
Read Committed( ˆpcoPi

t2
)(t2, r, x) holds in ĥ. Therefore, (t2, r) ∈ so ∪ ŵr; po∗; which is

a contradiction. Thus, as (t2, tr(r)) ∈ so∪ ŵr; po∗, Read Committed( ˆpcoPi
t2
)(t2, r, x) holds

in ĥ.
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4.5.2 Sufficient Conditions for Checking Consistency of Client Histories in
Polynomial Time

In general, Algorithm 7 is exponential the number of conflicts in h. The number of conflicts
is denoted by #conf(h). The number of conflicts exponent is implied by the number of
mappings in Xh explored by Algorithm 7 (Eh is the set of conflicts in h). The history width
and size exponents comes from the number of prefixes explored by Algorithm 8 which is
|h|width(h) · width(h)|Keys| in the worst case (prefixes can be equivalently described by a set of
so-maximal transactions and a mapping associating keys to sessions).

Theorem 4.5.8. For every client history h whose isolation configuration is composed
of {SER, SI, PC, RA, RC} isolation levels, Algorithm 7 runs in O(|h|#conf(h)+width(h)+9 ·
width(h)|Keys|). Moreover, if no transaction employs SI isolation level, Algorithm 7 runs
in O(|h|#conf(h)+width(h)+8).

On bounded, conflict-free histories only using SER, PC, RA, RC as isolation levels, Algorithm 7
runs in polynomial time. For instance, standard reads and writes can be simulated using
INSERT and SELECT with WHERE clauses that select rows based on their key being equal to
some particular value. In this case, histories are conflict-less (wr would be defined for the
particular key asked by the clause, and writes on other keys would not satisfy the clause). A
more general setting where WHERE clauses restrict only values that are immutable during the
execution (e.g., primary keys) and deletes only affect non-read rows also falls in this category.

The proof of Theorem 4.5.8 is split in two Lemmas: Lemma 4.5.12 analyzes the complexity
of Algorithm 8 while Lemma 4.5.13 relies on the previous result to conclude the complexity
of Algorithm 7.

Algorithm 9 Checking if P ▷t (P ∪ {t}) holds in h
1: function isConsistentExtension(h = (T, so,wr), P = (TP ,MP ), t)

▷ We assume t ̸∈ TP .
2: let pco = FIX(λR : saturate(h,R))(so ∪ wr)+

3: if ∃t′ ∈ T \ TP s.t. (t′, t) ∈ pco then ▷ Condition 1
4: return false
5: for all r ∈ reads(h) s.t. tr(r) ̸∈ TP ∪ {t}, v ∈ vis(iso(h))(tr(r)) do
6: if vpPv (t, r) does not hold in h then ▷ Condition 2
7: return false
8: return true

Lemma 4.5.9. Let h = (T, so,wr) be a history, P = (TP ,MP ) be a consistent prefix of h and
t ∈ T \ TP be a transaction. Algorithm 9 returns true if and only if P ▷t (P ∪ {t}).

Proof. Clearly, P ∪ {t} is an extension of P .isConsistentExtension(h, P, t) returns true
if and only if conditions at lines 3 and lines 5 in Algorithm 9 hold. This is equivalent to
respectively satisfy Properties 1 and 2 of Definition 4.5.1. By Definition 4.5.1, this is equivalent
to P ▷t (P ∪ {t}).
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Lemma 4.5.10. Let h = (T, so,wr) be a history and k ∈ N be a bound in iso(h). For any
consistent prefix P = (TP ,MP ) of h and any transaction t ∈ T \ TP , Algorithm 9 runs in
O(|h|k+3).

Proof. We analyze the cost of Algorithm 9. First, as pco ⊆ T × T , by Lemma 4.4.4, line 2
runs in O(|h|2 · |h|k+1). Next, the condition at line 3 can be checked in O(|T |). Finally,
the condition at line 5 can be checked in O(|T | · k · U); where U is an upper-bound on the
complexity of checking vpPv (t, r). With the aid of Lemma 4.4.3, we deduce that U ∈ O(|h|k−2).
Altogether, we conclude that Algorithm 9 runs in O(|h|k+3).

Lemma 4.5.11. Let h = (T, so,wr) be a client history. If iso(h) is composed of
{SER, SI, PC, RA, RC} isolation levels, then 5 is a bound of iso(h). Moreover, if no transac-
tion has SI as isolation, 4 is a bound on iso(h).

Proof. Let h be a history as described in the hypothesis. First, all isolation levels in the set
{SER, SI, PC, RA, RC} employ at most two axioms. Moreover, every axiom described employs
at most 5 quantifiers: three universal quantifiers and at most two existential quantifiers.
Hence, 5 is a bound on iso(h). Note that Conflict is the only axiom employing two existential
quantifiers; so if no transaction employs SI, 4 bounds iso(h).

Lemma 4.5.12. Let h = (T, so,wr) be a client history whose isolation configuration is
composed of {SER, SI, PC, RA, RC} isolation levels. Algorithm 8 runs in O(|h|width(h)+9 ·
width(h)|Keys|). Moreover, if no transaction has SI as isolation level, Algorithm 8 runs in
O(|h|width(h)+8).

Proof. For proving the result, we focus only on prefixes that are computable by Algorithm 8.
Let h = (T, so,wr) be a history. A prefix P of h is computable if either P = ∅ or there exist a
transaction t and a prefix P ′ s.t. P = P ′ ∪ {t} and P ′ is computable.

Intuitively, computable prefixes represent recursive calls of Algorithm 8 when employed
by Algorithm 7. Indeed, Algorithm 7 only employs Algorithm 8 at lines 7 and 11. In both
cases, P ′ = ∅ is the initial call to Algorithm 8. Moreover, the condition at line 3 justifies the
recursive definition.

On one hand, we observe that any call to Algorithm 8 is associated to a computable prefix
and on the other hand, Algorithm 8 does not explore two equivalent computable prefix thanks
to the global variable seen (line 4). Therefore, Algorithm 8 runs in O(N ·U); where N is the
number of distinct equivalence class of prefixes of h and U is an upper-bound on the running
time of Algorithm 8 on a fixed prefix without doing any recursive call.

We first compute an upper-bound of N . For any computable prefix P , we can deduce
by induction on the length of P that there exists transactions ti ∈ TP and a collection of
computable prefixes of h, Pi = (Ti,Mi) and transactions ti s.t. P|TP | = P , Pi = Pi−1 ∪ {ti}
and Pi−1 ▷ti Pi; where P0 = ∅ and 0 < i ≤ |TP |. The base case is immediate as |TP | = 0
implies that T ′ = ∅ while the inductive step can be simply obtained by applying the recursive
definition of computable prefix.

Let P = (TP ,MP ) be in what follows a computable prefix of h. We observe that both TP
and MP are determined by its so-maximal transactions. Let t, t′ ∈ T be a pair of transactions
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s.t. (t, t′) ∈ so and t′ ∈ TP . As t′ ∈ TP there must exist an index i, 1 ≤ i ≤ |TP | s.t.
Pi = Pi−1∪{t′}. Therefore, as Pi−1 ▷t′ Pi−1, t ∈ Ti−1 ⊆ TP . In particular, if t′ is a so-maximal
transaction in TP , all its so-predecessors are also contained in TP ; and hence, TP can be
characterized by its so-maximal transactions. Moreover, by induction on the length of P we
can prove that for every key x, MP (x) is a so-maximal transaction: the base case, |TP | = 0 is
immediate while the inductive step is obtained by the definition of P ∪ {t′′}, t′′ ̸∈ TP . Hence,
the number of computable prefixes of a history is in O(|T |width(h) · width(h)|Keys|). Thus,
N ∈ O(|h|width(h) · width(h)|Keys|). Moreover, if no transaction employs SI as isolation level,
prefixes with identical transaction set coincide. Hence, in such case, N ∈ O(|h|width(h)).

We conclude the proof bounding U . If |TP | = |T |, Algorithm 8 runs in O(1); so we can
assume without loss of generality that |TP | ≠ |T |. In such case, U represent the cost of
executing lines 3-7 in Algorithm 8. Thus, U ∈ O((|T | − |TP |) · V ); where V is the cost of
checking P ▷t (P ∪ {t}) for a transaction t ∈ T \ TP . By Lemma 4.5.9, Algorithm 9 can check
if P ▷t (P ∪ {t}) and thanks to Lemma 4.5.10, Algorithm 9 runs in O(|h|k+3); where k is a
bound on iso(h). Thus, U ∈ O(|h|k+4).

Thanks to Lemma 4.5.11, we conclude that Algorithm 8 runs in O(|h|width(h)+9 ·
width(h)|Keys|) and, if no transaction employs SI as isolation level, then it runs in
O(|h|width(h)+8).

Lemma 4.5.13. Let h = (T, so,wr) be a client history whose isolation configuration is com-
posed of {SER, SI, PC, RA, RC} isolation levels. Algorithm 7 runs in O(|h|#conf(h)+width(h)+9 ·
width(h)|Keys|). Moreover, if no transaction has SI as isolation level, Algorithm 7 runs in
O(|h|#conf(h)+width(h)+8).

Proof. Let h = (T, so,wr) be a history satisfying the hypothesis of the Lemma. We decompose
our analysis in two sections, the first one where we analyze the complexity of executing lines 2-
4 and second one where we analyze the complexity of executing lines 5-12. We observe that
by Lemma 4.5.11, 5 is a bound on iso(h).

In line 2, Algorithm 7 computes pco. On one hand, computing (so ∪ wr)+ is in O(|T |3).
On the other hand, as pco ⊆ T × T and by Lemma 4.4.4, executing saturate(h, (so∪wr)+)
is in O(|h|6); we deduce that computing pco after compute (so ∪ wr)+ is in O(|h|8).

In line 3, Algorithm 7 computes Eh. As wr is acyclic, for a given key x and transaction
t, valuewr(t, x) ∈ O(|T |). Therefore, computing 1rx(pco) is in O(|T |) as we assume that for
every r ∈ Vals, computing WHERE(r)(v) ∈ O(1). Thus, computing Eh is in O(|h|3).

Finally, in line 4, Algorithm 7 computes Xh. Note that Xh can be seen is a
×(r,x)∈Eh

0rx(pco). Computing each 0rx(pco) set is in O(|T |); so computing all of them is
in O(|T | · |Eh|). As each set 0rx(pco) is a subset of T , applying the cartesian-product defini-
tion of Xh we can compute Xh in O(|T ||Eh|). Therefore, as |Eh| = #conf(h), we conclude
that computing Xh is in O(|h| · #conf(h) + |h|#conf(h)) and that |Xh| ∈ O(|h|#conf(h)).
Altogether, as #conf(h) ≤ |T |2, we deduce that computing lines 2-4 of Algorithm 7 is in
O(|h|8 + |h|#conf(h)).

Next, we analyze the complexity of executing lines 5-12. Four disjoint cases arise, one
per boolean condition in Algorithm 7. The first one, checking if pco is cyclic (line 5), is
in O(|h|). The second one, checking if ∃(r, x) ∈ Eh s.t. 0rx(pco) = ∅ (line 6), clearly runs
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Figure 4.13: Running time of Algorithm 7 while increasing the number of sessions. Each point
represents the average running time of 5 random clients of such size.

in O(#conf(h) · |h|). The third one, checking if Eh = ∅ and executing Algorithm 8 is in
O(#conf(h) + |h|width(h)+9 · width(h)|Keys|) thanks to Lemma 4.5.12.

Finally we analyze the last case, computing an extension of h for each mapping in Xh and
then executing Algorithm 7 (lines 8-12). On one hand, computing each history is in O(|h|3)
as we require to define both so ⊆ T ×T and wr ⊆ Keys×T ×T . On the other hand, as the size
of each extension of h is in O(|h|), executing Algorithm 7 for a given history is in O(|Xh| ·
|h|width(h)+9 · width(h)|Keys|) thanks again to Lemma 4.5.12. Altogether, for each mapping
f ∈ Xh, executing lines 10-11 is in O(|h|width(h)+9 · width(h)|Keys|). As |Xh| ∈ O(|h|#conf(h)),
we conclude that executing this last case is in O(|h|#conf(h)+width(h)+9 · width(h)|Keys|).

We then conclude that Algorithm 7 runs in O(|h|#conf(h)+width(h)+9 ·width(h)|Keys|). More-
over, if no transaction employs SI as isolation level, Lemma 4.5.12 allows us to deduce that
in such case Algorithm 7 runs in O(|h|#conf(h)+width(h)+9).

4.6 Experimental Evaluation
We evaluate an implementation of checkConsistency in the context of the Benchbase [51]
database benchmarking framework. We apply this algorithm on histories extracted from
randomly generated client programs of a number of database-backed applications. We use
PostgreSQL 14.10 as a database. The experiments were performed on an Apple M1 with 8
cores and 16 GB of RAM.
Implementation. We extend the Benchbase framework with an additional package for
generating histories and checking consistency. Applications from Benchbase are instrumented
in order to be able to extract histories, the wr relation in particular. Our implementation is
publicly available [33].

Our tool takes as input a configuration file specifying the name of the application and
the isolation level of each transaction in that application. For computing the wr relation and
generating client histories, we extend the database tables with an extra column WRITEID which
is updated by every write instruction with a unique value. SQL queries are also modified
to return whole rows instead of selected columns. To extract the wr relation for UPDATE and
DELETE we add RETURNING clauses. Complex operators such as INNER JOIN are substituted by
simple juxtaposed SQL queries (similarly to [30]). We map the result of each query to local
structures for generating the corresponding history. Transactions aborted by the database
(and not explicitly by the application) are discarded.
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Benchmark. We analyze a set of benchmarks inspired by real-world applications and eval-
uate them under different types of clients and isolation configurations. We focus on isolation
configurations implemented in PostgreSQL, i.e. compositions of SER, SI and RC isolation levels.

In average, the ratio of SER/SI transactions is 11% for Twitter and 88% for TPC-C and
TPC-C PC. These distributions are obtained via the random generation of client programs
implemented in BenchBase. In general, we observe that the bottleneck is the number of
possible history extensions enumerated at line 9 in Alg. 3 and not the isolation configuration.
This number is influenced by the distribution of types of transactions, e.g., for TPC-C, a
bigger number of transactions creating new orders increases the number of possible full history
extensions. We will clarify.

Twitter [51] models a social network that allows users to publish tweets and get their
followers, tweets and tweets published by other followers. We consider five isolation config-
urations: SER, SI and RC and the heterogeneous SER + RC and SI + RC, where publishing a
tweet is SER (resp., SI) and the rest are RC. The ratio of SER (resp. SI) transactions w.r.t. RC
is 11% on average.

TPC-C [101] models an online shopping application with five types of transactions: read-
ing the stock, creating a new order, getting its status, paying it and delivering it. We consider
five isolation configurations: the homogeneous SER, SI and RC and the combinations SER+ RC
and SI+ RC, where creating a new order and paying it have SER (respectively SI) as isolation
level while the rest have RC. The ratio of SER (resp. SI) transactions w.r.t. RC is 88% on
average.

TPC-C PC is a variant of the TPC-C benchmark whose histories are always conflict-free.
DELETE queries are replaced by UPDATE with the aid of extra columns simulating the absence
of a row. Queries whose WHERE clauses query mutable values are replaced by multiple simple
instructions querying only immutable values such as unique ids and primary keys.
Experimental Results. We designed two experiments to evaluate checkConsistency’s
performance for different isolation configurations increasing the number of transactions per
session (the number of sessions is fixed), the number of sessions (the number of transactions
per session is fixed), resp. We use a timeout of 60 seconds per history.

The first experiment investigates the scalability of Algorithm 7 when increasing the number
of sessions. For each benchmark and isolation configuration, we consider 5 histories of random
clients (each history is for a different client) with an increasing number of sessions and 10
transactions per session (around 400 histories across all benchmarks). No timeouts appear
with less than 4 sessions. Figure 4.13 shows the running time of the experiment.

The second experiment investigates the scalability of Algorithm 7 when increasing the
number of transactions. For each benchmark and isolation configuration, we consider 5 his-
tories of random clients, each having 3 sessions and an increasing number of transactions per
session (around 1900 histories across all benchmarks). Figure 4.14 shows its running time.

The runtime similarities between isolation configurations containing SI versus those with-
out it show that in practice, the bottleneck of Algorithm 7 is the number of possible history
extensions enumerated at line 11 in Algorithm 7; i.e. the number of conflicts in a history;
not the isolation configuration considered. This number is influenced by the distribution of
types of transactions, e.g., for TPC-C, a bigger number of transactions creating new orders in-
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Figure 4.14: Running time of Algorithm 7 increasing the number of transactions per session.
We plot the average running time of 5 random clients of such size.

creases the number of possible full history extensions. Other isolation levels not implemented
by PostgreSQL, e.g., prefix consistency PC, are expected to produce similar results.

Both experiments show that Algorithm 7 scales well for histories with a small number of
writes (like Twitter) or conflicts (like TPC-C PC). In particular, Algorithm 7 is quite efficient
for typical workloads needed to expose bugs in production databases which contain less than
10 transactions [29, 79, 67].

A third experiment compares Algorithm 7 with a baseline consisting in a naive approach
where we enumerate witnesses and executions of such witnesses until consistency is deter-
mined. We consider Twitter and TPC-C as benchmarks and execute 5 histories of random
clients, each having 3 sessions and an increasing number of transactions per session (around
100 histories across all benchmarks). We execute each client under RC and check the obtained
histories for consistency with respect to SER.

The naive approach either times out for 35.5%, resp., 95.5% of the histories of Twitter,
resp., TPC-C, or finishes in 5s on average (max 25s). In comparison, Algorithm 7 has no
timeouts for Twitter and times out for 5.5% of the TPC-C histories; finishing in 1.5s on
average (max 12s). Averages are computed w.r.t. non-timeout instances. The total number
of executed clients is around 100. Only one TPC-C history was detected as inconsistent,
which shows that the naive approach does not timeout only in the worst-case (inconsistency
is a worst-case because all extensions and commit orders must be proved to be invalid).

A similar analysis on the TPC-C PC benchmark is omitted: TPC-C PC is a conflict-free
variation of TPC-C with more operations per transaction. Thus, the rate of timeouts in
the naive approach increases w.r.t. TPC-C, while the rate of timeouts using Algorithm 7
decreases.

Comparisons with prior work [29, 13, 67, 79] are not possible as they do not apply to SQL
(see Section 4.7 for more details).

This evaluation demonstrates that our algorithm scales well to practical testing workloads
and that it outperforms brute-force search.

4.7 Related Work
The formalization of database isolation levels has been considered in previous work. Adya [9]
has proposed axiomatic specifications for isolation levels, which however do not concern more
modern isolation levels like PC or SI and which are based on low-level modeling of database

106



Section 4.7. Related Work

snapshots. We follow the more modern approach in [45, 29] which however addresses the
restricted case when transactions are formed of reads and writes on a static set of keys
(variables) and not generic SQL queries, and all the transactions in a given execution have
the same isolation level. Our axiomatic model builds on axioms defined by Biswas et al. [29]
which are however applied on a new model of executions that is specific to SQL queries.

The complexity of checking consistency w.r.t isolation levels has been studied in [90, 29].
The work of Papadimitriou [90] shows that checking serializability is NP-complete while the
work of Biswas et al. [29] provides results for the same isolation levels as in our work, but in
the restricted case mentioned above.

Checking consistency in a non-transactional case, shared-memory or distributed systems,
has been investigated in a number of works, e.g., [31, 58, 52, 43, 63, 55, 7, 57, 11]. Transactions
introduce additional challenges that make these results not applicable.

Existing tools for checking consistency in the transactional case of distributed databases,
e.g., [29, 13, 67, 79] cannot handle SQL-like semantics, offering guarantees modulo their
transformations to reads and writes on static sets of keys. Our results show that handling the
SQL-like semantics is strictly more complex (NP-hard in most cases).
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5 Arbitration-Free Consistency is
Available (and Vice Versa)

5.1 Introduction
In this chapter, we focus on characterizing which consistency models support available imple-
mentations of which storage systems.

A storage system is composed of a collection of objects that can be read or modified using a
set of operations (the API of the storage). Specifications are expressed in terms of an abstract
model of storage executions, which is defined as a set of binary relations among events—each
event corresponding to an invocation of an operation on an object. These relations capture
typical control-flow dependencies–such as invocations occurring at the same replica–data-flow
dependencies–where certain updates affect the result of a query–and a total order used as a
"tie-breaker" to fix an order between concurrent invocations. The latter is called arbitration
order and it has an important role in our main result.

In a distributed storage system, implementations typically rely on communication proto-
cols to share the effects of invocations among all replicas. They also use specific algorithms
to merge the effects received from other replicas into the local replica’s state. As a result,
each invocation can be viewed as executing within a specific context–that is, the set of prior
operations, including those received from remote replicas.

A storage specification defines the expected behavior of the system. It consists of two
parts:

• a consistency model, restricting the possible contexts in which each invocation may
execute.

• an operation specification, describing the allowable effects of an invocation, given its
context.

A consistency model consists of a set of visibility formulas saying when an invocation
belongs to the context of another invocation. This “being in the context of” binary relation is
defined via combinations of the binary relations mentioned above (by standard composition,
union, and transitive closure). For instance, a visibility formula may state that all prior
invocations at the same replica should be included in the context. An operation specification
consists of a set of functions that characterize the read and write behavior of an invocation,
in particular, the value written by writes. Note that this value is not always fixed since we
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allow operations that read and write at the same time, e.g., Compare-and-Swap which writes
a given object only if the old value equals some other value given as input. We also allow
SQL transactions whose effects are even more complex.

We show that our framework covers many possible storage specifications, including Last-
Writer-Wins and Multi-Value Key-Value stores, Key-Value stores with Compare-and-Swap op-
erations, Key-Value stores with counters, as well as transactional and non-transactional SQL
stores, and many possible consistency models including Return-Value Consistency, Causal
Consistency, Sequential Consistency, and transactional isolation levels like Snapshot Isolation
and Serializability.

The arbitration-free consistency (AFC ) theorem. Our main result states roughly,
that a storage system has an available implementation if and only if the visibility formulas
that define its consistency model exclude any meaningful use of the total arbitration order.

Such a consistency model is called arbitration-free. As in previous works, we consider an
implementation to be available if operations can be answered immediately on every replica
(without waiting for messages from other replicas).

The proof of the AFC theorem is quite challenging, one reason being the very expressive
and abstract specification framework that we consider. Proving that there exist available
implementations for arbitration-free consistency models is the easier part since arbitration-
freeness implies that the model is weaker than causal consistency, and the latter supports
available implementations [21, 80, 82, 22]. The opposite direction is much more difficult and
is described in two stages.

We first consider a basic case, in which operations read and/or write a single value from/to
a single object. This yields a reasonably simple proof, while still covering consistency models
such as Return-Value Consistency, Causal Consistency, Prefix Consistency and Sequential
Consistency, and objects such as a key-value store, with ordinary put / get operations or
extended with Fetch-and-Add and Compare-and-Swap operations.

Then, we consider a general class of objects where operations can read and/or write
multiple objects at the same time, and reads may compute their return value from multiple
updates. In this very generic context, we need to introduce some number of restrictions
(assumptions) which are however satisfied by all practical cases that we are aware of (see
Section 5.8). This is to exclude pathological cases that arise from starting with a very abstract
formal model.

To summarize, we provide the first characterization of distributed storage formal speci-
fications that support available implementations which takes into account both consistency
constraints and the semantics of the implemented objects. At a high level, the key insight
behind our result is that in an asynchronous system, where replicas coordinate only through
the exchange of messages, they can establish at most a causal order between operations. The
arbitration order, in contrast, is total: it compares operations that are concurrent and there-
fore incomparable under causality. Determining such a total order would require additional
synchronization between replicas, coordination that cannot be achieved in an always-available
manner.
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5.2 Motivating Examples

PUT(x,1);
a = GET(y);

PUT(y ,2);
b = GET(x);

(a) Sequential Consistency and PUT, GET opera-
tions.

PUT(x, 1);
PUT(x, 2);
...
PUT(x, K);
a = GET(x);

PUT(y, 1);
PUT(y, 2);
...
PUT(y, K);
b = GET(y);

(b) Bounded Staleness and PUT, GET operations.

FAA(x, 1); FAA(x, 2);

(c) Sequential Consistency and FAA operations.

FAA(x, 1);
FAA(y, 3);

FAA(y, 2);
FAA(x, 4);

(d) Prefix Consistency and FAA operations.

Figure 5.1: Different litmus programs with two concurrent sessions showing the absence of
available implementations for selected pairs of consistency models and operation specifications.

We illustrate the broad applicability of the AFC theorem through various storage specifi-
cations, each reflecting different trade-offs between consistency and operation semantics. We
argue about the diversity of reasoning required and motivate the need for a unified framework.

As a starting point, we consider a standard key-value store with PUT and GET operations;
PUT(x, v) writes the value v to object (key) x, and GET(x) reads the latest1 value of object x. As
consistency model, we consider the standard Sequential Consistency (SC) whose formalization
uses arbitration to postulate an order in which different operations interleave. By the AFC
theorem, the latter implies that there exists no available implementation that ensures SC.
Intuitively, the proof is based on a litmus program like in Figure 5.1a. This program contains
two concurrent sessions, each executed at a different replica. Also, x and y are initially 0. An
SC available implementation should allow an execution in which, intuitively, the two replicas
operate without exchanging any messages, resulting in both final get operations returning
0. However, this outcome violates sequential consistency, as it cannot be produced by any
interleaving of the operations—leading to a contradiction.

We remark that this argument proves a version of the CAP theorem that is stronger than
the one proved in [59]. The latter proof relies on the real-time ordering requirement that
is embedded in linearizability — a consistency model stronger than sequential consistency
(cf. [70]).

Such a proof can be generalized to the case where PUT / GET operations are replaced for
instance, by ADD / CONTAINS operations on a set, i.e., PUT(x, v) and GET(x) in Figure 5.1a
are replaced by ADD(x) and CONTAINS(x) (and similarly for operations on y). As in the
previous case, an SC available implementation should allow an execution without exchange of
messages, resulting in both final CONTAINS operations returning false (the set does not contain
the element), which is an SC violation.

On the other hand, if we consider a weaker consistency model, a straightforward variation
of the program in Figure 5.1a can not be used to prove non-existence of available implemen-
tations. For instance, consider Bounded Staleness [2] a weakening of SC, which requires that

1We assume a standard semantics based on the Last-Writer-Wins conflict resolution policy.
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each get operation observes all preceding put operations (on the same object), except possibly
the most recent K − 1, for some fixed value of K. The put operations are still required to
execute following some fixed arbitration order as in SC (see Section 5.8.1 for a precise defini-
tion). This weakening for K = 2 admits an execution of t he program in Figure 5.1a where
both final get operations return 0 (the get operations may miss the only put in the program).
Therefore, this program cannot be used to show non-existence of available implementations.
Instead, one can use the program given in Figure 5.1b, which contains K put operations in
each session. One can follow now the same strategy as above and show that an execution
without exchange of messages makes both get operations return 0, and this violates bounded
staleness.

If we weaken consistency even further and consider Causal Consistency (CC) [96], then the
AFC theorem will imply existence of available implementations (which is known [21, 80, 82,
22]).

Now, if we change the set of operations and consider a storage system with only Fetch-and-
Add operations (FAA(x, v) returns the old value of x and adds v, atomically), then a proof for
non-existence of SC available implementations can be done using the program in Figure 5.1c
with only one FAA in each session. An execution without exchange of messages will imply
that both FAA return the initial value of x, and this is a violation of SC.

If we weaken consistency to Prefix Consistency (PC) [42], then the previous program is
not suitable. An execution where both FAA in Figure 5.1c return the initial value of x satisfies
PC (see section 5.4.1 for a formal definition). Instead, we need a litmus program like in
Figure 5.1d which contains two FAAs per session. Here, an execution where all FAAs return
an initial value does not satisfy PC. This program can also be used to show the non-existence
of available implementations of Parallel Snapshot Isolation (PSI) [98] or Conflict-preserving
Causal Consistency (CCC), a consistency model defined using the axioms Conflict and Causal
from [29]. As a side remark, note that CCC is equivalent to CC for the key-value store with
PUT and GET operations presented at the beginning, and therefore, there exists an available
implementation for CCC in that case.

While these cases follow a broadly similar proof strategy, each demands distinct proof
artifacts (such as litmus programs) and tailored reasoning. The AFC theorem unifies these
diverse arguments within a common theoretical framework, grounded in a formalization of a
wide class of storage specifications encompassing all the examples above.

5.3 Abstracting Storage Executions
We present an abstract model of distributed storage executions that includes the essential
components needed to define storage specifications. A distributed storage (or simply storage)
replicates the state of a set of objects over two or more nodes called replicas. We use Keys
to denote the infinite set of objects, ranged over x, y, z, and Reps to denote the set of replica
identifiers, ranged over r, r1, r2. Objects are accessed using a set of operations which may
write or return values in a set Vals.

An abstract execution records operation invocations along with a set of relations that
represent control-flow dependencies (two invocations executing on the same replica), and the
internal behavior of the storage. The internal behavior includes, broadly, the computation
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of object states and the return values of invocations, as well as the communication between
replicas. The first concerns local computation within each replica, while the second pertains
to communication protocols or underlying network assumptions. To distinguish these two
aspects, we first introduce the concept of a history, which records only the data-flow de-
pendencies relevant to characterizing the local computation. An abstract execution is then
defined as an extension of a history, enriched with additional relations that abstract inter-
replica communication.

5.3.1 Histories
The invocation of an operation on some replica is represented using an event e =
(id, r, op,wval,m) where id is an event identifier, r is a replica identifier, op is an operation
name, wval is a (partial) mapping that associates an object x with a value v that this event
writes to x, and m is additional metadata of the invocation. We use id(e) rep(e), op(e),
wval(e), and md(e) to denote the event identifier, replica identifier, operation, written value
mapping and metadata of an event e, respectively. We assume that every event e accesses
(reads or writes) a fixed finite set of objects denoted as obj(e). The set of events is denoted
by Events. We assume that Events includes a distinguished type of initial events that affect
every object, representing the initial state of the storage.

Example 5.3.1. As a running example, we consider a Key-value Store with four types of
operations: PUT(x, v) that writes v to object (key) x, GET(x) that reads object x, FAA(x, v) that
reads the value v′ of object x and writes v′ + v, and CAS(x, v, v′), that reads x and writes v′

iff the value read is v. We use faacas to refer to this storage (from the Fetch-and-Add and
Compare-and-Swap operations). Section 5.9.1 summarizes the full description of faacas.

We generalize the notion of history presented in Chapter 2 for storage specifications.
A history contains a finite set of events E ordered by a (partial) session order so that

relates events on the same replica, and a write-read relation wr (also known as read-from)
representing data-flow dependencies between events that update and respectively, read a same
object. Histories contain an initial event, init, that precedes every other event in E w.r.t so.
We consider a write-read relation wrx ⊆ P(E)× E for every object x ∈ Keys. The inverse of
wrx is defined as usual and denoted by wr−1

x . We use wr : Keys → P(E) × E to denote the
mapping associating each object x with wrx.

For simplicity, we often abuse the notation and extend wrx and wr to pairs of events: we
say that (w, r) ∈ wrx if w ∈ wr−1

x (r), and we say that (w, r) ∈ wr if there exists an object x
s.t. (w, r) ∈ wrx.

Definition 5.3.2. A history (E, so,wr) is a finite set of events E along with a strict partial
session order so, and a write-read relation wrx ⊆ P(E)× E for every x ∈ Keys such that

• E contains a single initial event init, which precedes every other event in E w.r.t. so,

• ∀e, e′ ∈ E \ {init}, so orders e and e′ iff rep(e) = rep(e′),

• the inverse of wrx is a total function for every x ∈ Keys, and

• so ∪ wr is acyclic (here we use the extension of wr to pairs of events).
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{x : 0}
init

FAA(x, 1)

e0

CAS(x, 0, 2)

e1soso wrx
wrx

(a) e0 reads 0, writes 1; e1 reads 1 and does not
write.

{x : 0}
init

FAA(x, 1)

e0

CAS(x, 0, 2)

e1wrx soso wrx

(b) e0 reads 0 and writes 1; e1 reads 0 and writes
2.

Figure 5.2: Two examples of histories for faacas. Arrows represent so and wr relations. The
initial event init defines the initial state where x is 0. Events e0 and e1 execute a fetch-and-
add and compare-and-swap respectively, at different replicas.

Example 5.3.3. Figure 5.2 shows two examples of histories of the storage faacas presented in
Example 5.3.1. For readability, we omit replica identifiers from events. The wr dependencies
can be used to explain the “local” computation in those invocations as follows: (1) on the left,
the CAS should fail (not write to x) because it reads the value written by the FAA which should
be equal to 1 since FAA reads the initial value, (2) on the right, the CAS should succeed (write
to x) because it reads the initial value (the FAA will concurrently write 1 to x).

We say that the event w is read by the event r if (w, r) ∈ wr. Since we assumed that
wr−1

x is a total function, we use wr−1
x (r) to denote the set W such that (W, r) ∈ wrx. We use

wr−1
x (e) = ∅ to indicate that e does not read x (resp. wr−1

x (e) ̸= ∅ to indicate that e reads x).

5.3.2 Abstract Executions
An abstract execution of a distributed storage is a history with a finite set of events E along
with a relation rb ⊆ E × E called receive-before, and a total order ar ⊆ E × E called arbi-
tration. These relations are an abstraction of the internal communication behavior, i.e., the
propagation of operation invocations between different replicas and conflict-resolution policies.
The receive-before relation models information exchange between replicas and intuitively, an
event w is received-before an event e on a replica r if w has been propagated to replica r
before executing e. The arbitration order represents a “last-writer wins” conflict resolution
policy between concurrent events and the order in which events take effect in the storage for
“strong” consistency models such as Sequential Consistency or Serializability. This order may
be ignored by weaker consistency models, where a read is not required to read from the latest
update that precedes it in arbitration order, or by specific types of storage, e.g., CRDTs (see
Section 5.8), where conflict resolution does not rely on the arbitration order.

Definition 5.3.4. An abstract execution ξ = (h, rb, ar) is a history h = (E, so,wr) along with
an asymmetric, irreflexive relation receive-before rb ⊆ E × E and a strict total arbitration
order ar ⊆ E × E, such that:

1. propagated updates are not “forgotten” within the same replica: rb = rb; so∗2,
2The symbol ; denotes the usual composition of relations
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2. events at the same replica or events that are read are necessarily received-before, and ar
is consistent with the receive-before relation: so ∪ wr ⊆ rb ⊆ ar.

ξ is called an abstract execution of h.

The conditions above are naturally satisfied by storages where replicas execute in a single
process, values are not produced “out of thin air”, and the arbitration order is implemented
using “consistent” timestamps, i.e. timestamps that do not contradict Lamport’s clocks [76]
or causality. This is the case for implementations where “ties” between concurrent operations
are solved based on replica IDs (assumed to be totally ordered), or when using timestamps
from a (partially-)synchronized clock – which is most often the case in practice.

For an event e, we use e ∈ ξ to denote the fact that e ∈ E.

{x : 0}
init

FAA(x, 1)

e0

CAS(x, 0, 2)

e1ar rb arrb

ar

rb

(a) Abstract execution of the history in Fig-
ure 5.2a.

{x : 0}
init

FAA(x, 1)

e0

CAS(x, 0, 2)

e1ar rb arrb

ar

{x : 0}
init

FAA(x, 1)

e0

CAS(x, 0, 2)

e1ar rb arrb

ar

(b) Two abstract executions of the history in Fig-
ure 5.2b.

Figure 5.3: Abstract executions of the histories from Figure 5.2. Arrows represent ar and rb
relations. For readability, we omit the so and wr relations. The event e0 is received-before
executing e1 in Figure 5.3a but not in Figure 5.3b. The arbitration relation is the same in
both executions.

Example 5.3.5. Figure 5.3 shows abstract executions for the histories in Figure 5.2. In both
cases, the receive-before relation includes only the wr dependencies which is anyway required by
definition. Reading a value at some replica r produced by an invocation e at some other replica
r′ should imply that e propagated to r. On the left, the arbitration order includes just the wr
dependencies which already ensure totality. On the right, FAA and CAS are concurrent, i.e.,
both invocations were executed before either had a chance to propagate. We present the two
possible arbitration orders. This shows that the arbitration order cannot be always determined
based on the information exchanged between the replicas, i.e. by the receive-before.

The concept of abstract execution defined earlier is subsequently used to formalize the
specifications of distributed storage systems. We will start with a so-called basic class that
concerns “single-object” operations.
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5.4 Basic Storage Specifications
We present a first class of storage specifications, called basic, where operations read and/or
write a single value from/to a single object (the operations in Example 5.3.1 satisfy this
assumption). We will present a more general framework with multi-object operations that
read and/or write multiple values or objects in Section 5.8.

In general, a storage specification has two parts: a consistency model characterizing the
propagation of invocations between different replicas, and an operation specification which
defines object states and return values. The definition of consistency models generalizes the
definition of isolation level presented in Chapter 2, and the definition of operation specifica-
tions refines replicated data types as defined in [40]. The first two subsections define these
concepts for the class of operations mentioned above, and the last subsection formalizes the
validity of an abstract execution w.r.t. such storage specifications.

5.4.1 Basic Consistency Models
In general, a consistency model is defined as a non-empty set of visibility formulas that
characterize the context in which an event (invocation of an operation) is executed (abstractly
speaking). The context of an event e at a replica r is defined as the set of events, potentially
from other replicas, that propagated to r prior to executing e. The notion of validity w.r.t. a
consistency model defined later will require that the event e which is read by another event
e′ is the last in the arbitration order ar within the context of e′. This accurately models the
Last-Writer-Wins conflict resolution policy (we consider other conflict resolution policies in
Section 5.8). We define hereafter a class of so-called basic consistency models that will be
extended later in Section 5.8.1.

Formally, a visibility formula v describes a binary relation between events which is
parametrized by an object in Keys. This is written as a predicate vx(e1, e2) meaning that
v relates e1 to e2 for object x (explained below). A consistency model (criterion) CMod is a
set of visibility formulas.

For a consistency model CMod and an abstract execution ξ, the context of an event r for
object x is the set of all events e which are related to r by some visibility formula in CMod
along with a projection of rb and ar to this set of events, i.e.,

ctxtx(r, [ξ,CMod]) = (Ex, rbEx×Ex , arEx×Ex) with Ex = {e ∈ ξ | ∃v ∈ CMod. vx(e, r)} (5.1)

We use Contexts to denote the set of all possible contexts, i.e., tuples (E, rbE , arE) where
E is a finite set of events, rbE is an asymmetric, irreflexive relation over E, and arE is a strict
total order over E, such that rbE ⊆ arE .

Basic visibility formulas (used in basic consistency models) have the following form:

vx(ε0, εn) ::= ∃ε1, . . . , εn−1.
n∧

i=1

(εi−1, εi) ∈ Relvi ∧ ε0 writes x ∧ wr−1
x (εn) ̸= ∅ (5.2)

where each relation Relvi , 1 ≤ i ≤ n, is defined by the grammar listed below:

Rel ::= id | so | wr | rb | ar | Rel ∪ Rel | Rel;Rel | Rel? | Rel+ | Rel∗ (5.3)
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This formula states that ε0 (which is e in Eq.5.1) is connected to εn (which is r in Eq.5.1)
by a path of dependencies that go through some intermediate events ε1, . . . εn−1 (all the ε
variables are interpreted as events). The constraint wr−1

x (εn) ̸= ∅ asks that εn reads the
object x. Every relation used in the path is a composition of so,wr, rb and ar via union ∪,
composition of relations ;, and transitive closure +. Rel? is syntactic sugar for id ∪ Rel, and
Rel∗ for id∪Rel+. Since the grammar includes composition the existential quantifiers in Eq.5.3
do not increase expressivity (one could write (ε0, εn+1) ∈ Relv1; . . . ;Rel

v
n). These quantifiers

are used to simplify proofs in Section 5.6.
The predicate ε0 writes x means that ε0 writes to object x, i.e., wval(e)(x) ↓.
We write vx(e0, . . . en) whenever vx(e0, en) holds using the events e1, . . . en−1 to instantiate

the existential quantifiers. The length of vx, denoted by len(vx), is the number of relations
Relvi used in its definition (n in Equation (5.2)).

e ε1

ε0

writes x

wrx

so ∪ wr

ar

ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧

(ε0, ε1) ∈ so ∪ wr

(a) Return-Value

e ε1

ε0

writes x

wrx

rb+

ar

ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧

(ε0, ε1) ∈ rb+

(b) Causal

e ε1

ε0

writes x
•

wrx

ar∗

(so ∪ wr)ar

ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧

(ε0, ε1) ∈ ar∗; (so ∪ wr)

(c) Prefix

e ε1

ε0

writes x

wrx

ar

ar

ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧

(ε0, ε1) ∈ ar

(d) SC / SER

Figure 5.4: Visibility formulas defining the homonymous consistency models Return-Value
Consistency (RVC, Figure 5.4a), Causal Consistency (CC, Figure 5.4b), Prefix Consistency
(PC, Figure 5.4c) and Sequential Consistency/Serializability (SC/SER, Figure 5.4d). Solid
edges describe the dependencies linking ε0 and ε1. We include the wrx edge (and its source
e) as a visualization of the constraint wr−1

x (ε1) ̸= ∅. Dashed ar edges are not part of the
visibility formulas. These capture the Last-Writer-Wins conflict resolution policy discussed
later, requiring that the event e being read succeeds all other events from the context in ar.

As mentioned above, a basic consistency model is a set of basic visibility formulas.
Figure 5.4 describes several visibility formulas and their corresponding consistency models,

inspired by Biswas et al. [29]. The dashed ar edges (leading to e) should be ignored for now.
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Basic visibility formulas constrain events w.r.t. a single object – x. Later, we will define
consistency models whose visibility formulas can impose additional constraints that concern
multiple objects.

We say that a consistency model CMod1 is weaker than another consistency model CMod2,
denoted CMod1 ≼ CMod2 if intuitively, the context of any event w.r.t. CMod1 is larger than
the context w.r.t. CMod2. Formally, CMod1 ≼ CMod2 iff for every abstract execution ξ, event
e ∈ ξ and object x, ctxtx(e, [ξ,CMod1]) ⊆ ctxtx(e, [ξ,CMod2]) holds. CMod1 and CMod2 are
equivalent, denoted CMod1 ≡ CMod2, when CMod1 ≼ CMod2 and CMod2 ≼ CMod1.

We assume that every consistency model CMod includes a visibility formula vsox (resp.
vwrx ) such that so ⊆ vsox (resp. wrx ⊆ vwrx ) for every object x ∈ Keys. The constraint so ⊆ vsox
corresponds to the so-called "read-my-own-writes" consistency (i.e., an event "observes" every
preceding event at the same replica) and wrx ⊆ vwrx is a “well-formedness” constraint since
visibility formulas will constrain the write-read relation in a history (see Definition 5.4.2).

All consistency models in Figure 5.4 trivially satisfy this constraint as for any abstract
execution, so ∪ wr ⊆ rb ⊆ ar. RVC is the weakest consistency model that our framework can
describe.

5.4.2 Basic Operation Specifications
While visibility formulas define the context of an invocation in terms of prior invocations, the
effect of an invocation is defined using the following semantical functions: rspec says whether
an event reads an object or not, and wspec defines the value written by the invocation, if any.
The written value may depend on the value read by the event in the case of atomic read writes
like FAA and CAS. Concerning notations, for a partial function f : A ⇀ B, we use f(a) ↓ to
say that f is defined for a ∈ A, and f(a) ↑, otherwise. Similarly, for a predicate p over some
set A, we use p(a) ↓ to say that p is true for a, and p(a) ↑, otherwise.

A basic read specification rspec is a predicate over Events. For example, Equation (5.4)
describes the read specification of faacas. We say that an event e is a read event if rspec(e) ↓,
and in such case, we say that e reads obj(e).

rspec(r) = true iff op(r) = GET, FAA, CAS (5.4)

A basic write specification wspec is a partial function wspec : Events ⇀ Vals ⇀ Vals,
that associates non-initial events to partial functions that map a read value to a value to be
written. For example, Equation (5.5) describes the write specification of faacas.

wspec(w)(v) =


v′ if w = PUT(x, v′)
v + v′ if w = FAA(x, v′)
v′′ if w = CAS(x, v′, v′′) ∧ v = v′

undefined otherwise

(5.5)

For an event e, we say that e is a write event if wspec(e) ↓. We assume that if wspec(e) ↓,
then the function wspec(e) : Vals ⇀ Vals is defined for at least one value. We say that
e writes x given v if x = obj(e) and wspec(e)(v) ↓. We assume that every value v can enable
at least one event to write, i.e., there exists e ∈ Events s.t. wspec(e)(v) ↓. We also assume
that if e is a write event but it is not a read event, e.g., a PUT invocation, then wspec(e) is
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a total constant function, i.e. wspec(e) : Vals→ Vals and wspec(e)(v1) = wspec(e)(v2) for all
v1, v2.

Definition 5.4.1. A basic operation specification is a tuple OpSpec = (E, rspec,wspec) where
E is a set of events, such that obj(e) is a singleton for every e ∈ E.

We use Events[OpSpec] to refer to the set of events E in an operation specification.
Operation Closure. We define some natural assumptions about basic operation speci-
fications (it is easy to check that they hold on the faacas example with the definitions in
Equation (5.4) and Equation (5.5)). We assume that E contains at least one read and one
write event. We also assume that all objects support a common set of operations with identical
read and write behavior, and that these operations can be executed at any replica. Formally,
for every event e ∈ E, replica r, identifier id and object x there exists an event e′ ∈ E s.t.
rep(e′) = r, id(e′) = id, obj(e′) = x, rspec(e′) = rspec(e) and wspec(e′) = wspec(e).
(Conditional) Read-Write Events. We say that OpSpec allows read-writes if E contains
an event that is a read and a write event at the same time (e.g., FAA and CAS invocations); we
call such events read-write events. If OpSpec allows read-writes, then we assume that every
value can enable some read-write to write, i.e., for every value v, E contains a read-write
event e s.t. wspec(e)(v) ↓. As an example, this condition is not satisfied by a storage with
only GET and TEST&SET operations (TEST&SET writes 1 if it reads 0 and nothing otherwise).
Indeed, value 1 cannot enable any write.

A read-write event is called unconditional if for every value v, wspec(e)(v) ↓ and con-
ditional otherwise. For example, a FAA invocation is unconditional and a CAS invocation is
conditional. We assume that if OpSpec allows conditional writes, then every value v can
disable some conditional read-write to write, i.e., E contains a conditional read-write event
s.t. wspec(e)(v) ↑.
5.4.3 Validity w.r.t. Basic Storage Specifications
A basic storage specification is a pair Spec = (CMod,OpSpec) where CMod is a basic consis-
tency model and OpSpec is a basic operation specification. Next, we formalize the validity of
an abstract execution w.r.t. a basic storage specification.

The interpretation of a basic visibility formula vx(ε0, εn) on an abstract execution ξ is
defined as expected.

Definition 5.4.2. Let Spec = (CMod,OpSpec) be a basic storage specification. An abstract
execution ξ = (h, rb, ar) of a history h = (E, so,wr) is valid w.r.t. Spec iff

• it contains events from the operation specification, i.e., E ⊆ Events[OpSpec],

• the write-read dependencies of each event e ∈ E for object x satisfy the following:

– if e reads object x, i.e. rspec(e) ↓ and x ∈ obj(e), e reads from the write event in
its context that is maximal w.r.t. the arbitration order: wr−1

x (e) = {we
x},

– if e does not read object x, i.e. rspec(e) ↑ or x ̸∈ obj(e), then wr−1
x (e) = ∅.

• the value written by each event e ∈ E to object x is consistent with wspec:
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– if e reads object x, i.e. rspec(e) ↓ and x ∈ obj(e), then it writes based on the value
read: wval(e)(x) = wspec(e)(wval(we

x)(x))
3,

– if e does not read object x, i.e. rspec(e) ↑ or x ̸∈ obj(e), then wval(e)(x) =
wspec(e)(_)4,

where we
x = maxar ctxtx(e, [ξ,CMod]).

A history h is valid w.r.t. Spec iff there exists an abstract execution of h which is valid w.r.t.
Spec.

Recall that the value function, and implicitly, the operation specification, are used to
interpret the visibility formulas of CMod and thus define invocation contexts.

Example 5.4.3. The abstract executions described in Figure 5.3 are both valid w.r.t.
(CC, faacas) as every event which is read is also received-before (wr ⊆ rb). However, only
Figure 5.3a is valid w.r.t. (SC, faacas). In Figure 5.3a, e1 reads from the writing event that
precedes it w.r.t. ar. On the other hand, in Figure 5.3b, e1 reads x from init and not from
e0 which is its maximal visible event w.r.t. ar that writes x. Moreover, by the symmetry
between e0 and e1, it can be proven that any abstract execution of such history is not valid
w.r.t. (SC, faacas).

5.5 Programs and Storage Implementations
We model programs accessing a storage and storage implementations using Labeled Transition
Systems (LTSs). Their interaction via invocations of operations will be defined as the usual
parallel composition of LTSs. We also present the notions of availability and validity of a
storage implementation, key to the AFC theorem.

5.5.1 Labeled Transition Systems
An LTS L = (S,A, s0,∆) is a tuple formed of a (possibly infinite) set of states S, a set of
actions A, an initial state s0 ∈ S and a (partial) transition function ∆ : S × A ⇀ S. An
execution of L is an alternating sequence of states and actions ρ = s0, a0, s1, a1, s2, . . . such
that ∆(si, ai) = si+1 for each i. A state s is reachable if there exists an execution ending in s.
A trace of an execution ρ is the projection of ρ over actions (the maximum subsequence of ρ
formed of actions). The final state of a finite trace t, denoted by state(t), is the last state of
ρ. The set of all traces of L is denoted by TL. An LTS is finite if all its traces are finite. For
any finite trace t and action a, ∆(t, a) is defined as ∆(state(t), a). If ∆(t, a) ↓, then t⊕ a is
defined by appending a to t.

Let L1 = (S1, A1, s
1
0,∆1) and L2 = (S2, A2, s

2
0,∆2) be two LTSs. We define a parallel

composition operator between L1 and L2 that is parametrized by a partial function π : A1 ⇀
A2. This function allow us to define a relationship between a subset of A1 and a subset of
A2, called synchronized actions of L1 and L2. The set of actions a ∈ A1 for which π(a) is
not defined (resp. actions a ∈ A2 for which π−1(a) is not defined) are the local actions of L1

3Since wval and wspec are partial functions, the equality also means that the left side is defined iff the
right side is defined.

4_ represents any value in Vals.
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(resp. L2). Without loss of generality, we assume that the set of local actions of L1 and L2

are disjoint.
The parallel composition of L1 and L2 w.r.t. π is the LTS L1 π

L2 = (S,A, s0,∆) where
S = S1 × S2, A = A1 ∪A2, s0 = (s10, s

2
0), and ∆ is defined as follows:

∆((s1, s2), a)::=


(∆(s1, a),∆(s2, π(a))) if a ∈ A1, π(a) ↓,∆(s1, a) ↓, and ∆(s2, π(a)) ↓
(∆(s1, a), s2) if a ∈ A1, π(a) ↑, and ∆(s1, a) ↓
(s1,∆(s2, a)) if a ∈ A2, π

−1(a) ↑, and ∆(s2, a) ↓
undefined otherwise

(note the asymmetry due to using the function π). Whenever there is no ambiguity w.r.t. π
we simply write L1 L2.

5.5.2 Programs and Storage Implementations
Let E be a set of events. A program over E is an LTS PE = (Sp, Ap, s

p
0,∆p) such that E ⊆ Ap.

Intuitively, this LTS models all possible interleavings between invocations on different replicas.
Actions in Ap \ E represent computation steps performed by the program locally, before or
after invoking operations on the storage. Also, to simplify the technical exposition, we do not
consider separate transitions for calling and returning from a storage operation. Intuitively,
the transitions labeled by events occur at the return time.

A storage implementation over E is an LTS IE = (Si, Ai, s
i
0,∆i) such that Ai contains

(1) an arbitrary set of local actions (representing computation/communication steps internal
to the storage), and (2) pairs of events in E and their read-dependencies, i.e., pairs (e,m)
where e ∈ E and m : Keys ⇀ P(E). Intuitively, m represents the write-read dependencies
of e. We also assume that each action includes an identifier, denoted by id(a), so that along
an execution every action occurs only once. For any action a = (e,m), ev(a) and wr-Set(a)
denote the event e and the write-read dependencies m respectively. Also, op(a) = op(e) is
the operation type of a. To model communication, we assume that Ai includes two types of
local actions, send actions for sending a message (from one replica to another) and receive

to receive a message.
The formalization of send/receive actions is straightforward and we omit it. We will

say that a send action matches a receive action if they concern precisely the same message
(messages are associated with unique identifiers). For any send, resp., receive, action a at
some replica r, rb-Set(a) denotes the set of events that r sends in this message, resp., that r
receives in this message. We assume that if a trace t contains any such action, for every event
e ∈ rb-Set(a) there must exist an action (e,_) preceding a in t. As expected, if as and ar
match, then rb-Set(as) = rb-Set(ar).

For any action a ∈ Ap ∪Ai, rep(a) denotes the replica executing a.
The interaction between a storage implementation IE and a program PE is defined as

their asymmetric parallel composition w.r.t. a partial function π : Ai ⇀ Ap which is defined
only for actions of the form (e,m) (as described above) by π(e,m) = e. The program and
the storage implementation synchronize on events representing operation invocations. It is
denoted by IE ∥ PE . By definition, traces of IE ∥ PE include actions of the form (e,m)
(coming from Ai), and local actions of PE or IE .
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Traces of IE (or IE ∥ PE) induce histories and abstract executions. The induced history
of a trace t of IE (or IE ∥ PE) is the history h = (Et, sot,wrt) where Et is the set events e
such that some action ae = (e,m) occurs in t, sot orders events from the same replica as they
occur in t, and for every object x and event e, (wrtx)−1(e) = W iff wr-Set(ae) = (x,W) (ae
is the action that contains e). We implicitly assume that for any event e ∈ E different from
init, (init, e) ∈ sot. We use h(t) to denote the induced history of a trace t.

The induced receive-before of a trace t of IE (or IE ∥ PE) is the relation rbt over events
induced by the matching relation between sends and receives: (e, e′) ∈ rbt iff (e, e′) ∈ sot or
there exists matching send and receive actions, as, ar and a synchronized action a = (e′,_)
s.t. rep(ar) = rep(a), ar occurs before a in t, and e ∈ rb-Set(as) (which coincides with
rb-Set(ar)).

A trace t of IE also induces a set of abstract executions of the form ξ = (h(t), rbt, art)
where art is any total order between the events in ξ that is consistent with rbt, i.e., rbt ⊆ art

(to satisfy the requirements in Definition 5.3.4).

5.5.3 Availability and Validity of a Storage Implementation
We say that a storage implementation IE is available if, intuitively, every execution of IE
terminates when interacting with a finite program PE (executing a single synchronized action
does not make a replica enter an infinite loop of local steps), and no invocation is delayed due
to a replica waiting for messages.

We say that a replica r ∈ Reps is waiting in a trace t of some composition IE ∥ PE if

• the program can execute some action at replica r: there is an action a ∈ Ap s.t. rep(a) =
r and ∆PE

(t′, a) ↓; where t′ is obtained from t by removing all local actions of IE and
replacing every action (e′,m) with e′, and

• the only actions of replica r that the parallel composition can execute are receive

actions: for every action a ∈ Ap ∪ Ai s.t. a is not a receive action and rep(a) = r,
∆IE∥PE

(t, a) ↑.

Note that the latter implies that the action a that PE can execute after t′ is necessarily an
event in E (otherwise, a is a local action of PE and the parallel composition could execute
it).

Definition 5.5.1. An implementation IE is available if the following hold:

• for every finite program PE, the composition IE ∥ PE is also finite, and

• for every program PE and every trace t of IE ∥ PE, there is no replica waiting in t.

Given a storage specification Spec over a set of events E, a storage implementation IE is
valid w.r.t. Spec if every trace t induces some abstract execution which is valid w.r.t. Spec.An
implementation valid w.r.t. Spec is simply called a Spec-implementation (or implementation
of Spec).
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5.6 The Basic Arbitration-Free Consistency Theorem
We present a simpler instance of our main result (the AFC theorem) for basic storage speci-
fications.

To simplify the statement of the theorem, we define a normal form for basic consistency
models w.r.t. a basic operation specification OpSpec. A visibility formula is called simple if
it does not use composition operators between relations, i.e., the grammar in Equation (5.3)
is replaced by: Rel ::= so | wr | rb | ar. Also, a visibility formula v from a consistency
model CMod is called vacuous w.r.t. OpSpec iff for every abstract execution ξ, ξ is valid
w.r.t. (CMod,OpSpec) iff ξ is valid w.r.t. (CMod \ {v},OpSpec). For example, if Relvi and
Relvi+1 in Equation (5.2) are wr (for some i), then any instance of εi must be an invocation
of a read-write that both reads and writes. If the operation specification does not include
read-writes (e.g., a key-value store with only PUT and GET operations), such visibility formulas
are vacuous.

Definition 5.6.1. A basic consistency model CMod is called in normal form w.r.t. a basic
operation specification OpSpec if it contains only simple visibility formulas and no visibility
formula from CMod is vacuous w.r.t. OpSpec.

A normal form of a basic consistency model CMod w.r.t. OpSpec is any basic consistency
model CMod′ in normal form, such that for every abstract execution ξ, ξ is valid w.r.t.
(CMod,OpSpec) iff ξ is valid w.r.t. (CMod′,OpSpec). We show in Section 5.11 that every
basic consistency model CMod has a normal form. A normal form can be obtained by replacing
each visibility formula v with an equivalent (possibly infinite) set of simple visibility formulas
Sv. Each set Sv is obtained by recursively decomposing the union, composition and transitive
closure operators in each relation Relv (see Equation (5.2)).

A visibility formula is called arbitration-free if its definition does not use the arbitration re-
lation ar, i.e. the grammar in Equation (5.3) omits the ar relation. For example, in Figure 5.4,
RVC and CC are arbitration-free while PC and SC are not.

Definition 5.6.2. A consistency model is called arbitration-free w.r.t. an operation speci-
fication OpSpec if the visibility formulas contained in some normal form w.r.t. OpSpec are
arbitration-free.

Defining arbitration-free via a normal form removes “redundant” occurrences of the
arbitration-order, i.e. visibility relations that employ ar but are vacuous w.r.t. OpSpec. We
also show in Section 5.11 that for every basic consistency model CMod, if some normal form
consists of arbitration-free visibility formulas, then this holds for any other normal form (this
is actually proved for the more general class of consistency models defined in Section 5.8.1).

Theorem 5.6.3 (Basic Arbitration-Free Consistency (AFC0)). Let Spec =
(CMod,OpSpec) be a basic storage specification. The following statements are equivalent:

1. CMod is arbitration-free w.r.t. OpSpec,

2. there exists an available Spec-implementation.
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In the following, we present a summary for the proof of AFC0, which contains a series of
lemmas. We refer the reader to Section 5.7 for a detailed proof. Lemmas 5.6.4 to 5.6.6 show
that if CMod is arbitration-free then there exists an available Spec-implementation, whereas
Lemma 5.6.7 is used to show the converse.

5.6.1 Arbitration-Freeness Implies Availability
Assume that CMod is arbitration-free w.r.t. OpSpec. We first show that CMod is weaker than
CC.

Lemma 5.6.4. Let Spec = (CMod,OpSpec) be a basic storage specification. If CMod is
arbitration-free w.r.t. OpSpec, then CMod is weaker than CC.

Proof Sketch. If CMod is arbitration-free, then every simple visibility formula v in a normal
form of CMod does not use ar, i.e. it only uses so,wr and rb. By Definition 5.3.4, so∪wr ⊆ rb
in any abstract execution ξ. Hence, for every object x, ctxtCMod(r, [ξ, x]) ⊆ ctxtCC(r, [ξ, x]),
i.e. CMod ≼ CC.

Lemma 5.6.5 below implies that if a consistency model CMod is weaker than CC, then any
available (CC,OpSpec)-implementation is also an available (CMod,OpSpec)-implementation.

Lemma 5.6.5. Let OpSpec be a basic operation specification, and let CMod1,CMod2 be a pair
of basic consistency models s.t. CMod2 is weaker than CMod1. Any abstract execution valid
w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Lemma 5.6.6 shows that there exists an available (CC,OpSpec)-implementation, which
concludes the proof of this direction.

Lemma 5.6.6. Let OpSpec be a basic operation specification. There exists an available
(CC,OpSpec)-implementation.

Proof Sketch. We define an available storage implementation of (CC,OpSpec) which is an
abstraction of existing CC implementations [21, 80, 82, 22].

The storage implementation IE describes a transition function associating events with
the write-read relation obtained by computing the maximum writing event on its causal past
(i.e. all write events that are already received in its replica). Each replica r maintains the
causal past as follows: (1) every event invoked at r is added to r’s causal past, (2) after
every invocation, r broadcasts a message to all other replicas that contains its causal past, (3)
whenever a replica r′ receives this message, it adds the included causal past to its own. Sent
messages are not required to be received before executing an invocation. The latter implies
trivially that IE is an available storage implementation. The validity w.r.t. (CC,OpSpec)
follows easily from the “transitive” communication of causal pasts between replicas.

5.6.2 Availability Implies Arbitration-Freeness
We prove the contrapositive: if CMod is not arbitration-free, then no available Spec-
implementation exists. Indeed, if CMod is not arbitration-free, every normal form CMod′ of
CMod contains a simple visibility formula involving ar (see Definition 5.6.2). By Lemma 5.6.7,

124



Section 5.6. The Basic Arbitration-Free Consistency Theorem

init

. . .ex0
0

. . .

. . .ex0
dv−1

. . .ex1
dv

. . .

. . .ex1
n

. . . ex1
0

. . .

. . . ex1
dv−1

. . . ex0
dv

. . .

. . . ex0
n

writes x0

do not write x0

reads x0

so so

so Relv1

so Relvdv−1

so

so Relvdv+1

so Relvn

so Relv1

so Relvdv−1

so

so Relvdv+1

so Relvn

ar

ar

rb

Figure 5.5: Abstract execution of a trace without receive actions for the visibility formula
v. If i ̸= dv, (exl

i−1, e
xl
i ) ∈ Relvi holds because the two events are executed at the same replica

(recall that so ⊆ rb ⊆ ar). If (ex0
dv−1, e

x1
dv−1) ∈ ar, then since so ⊆ ar and ar is transitive, we get

that (ex0
dv−1, e

x0
dv
) ∈ Relvdv = ar; and therefore, that vx0(e

x0
0 , e

x0
n ) holds. However, in the absence

of receives, (ex0
0 , e

x0
n ) ̸∈ rb.

such a formula precludes the existence of an available (CMod′,OpSpec)-implementation. Con-
sequently, there is no available (CMod,OpSpec)-implementation, since any such implementa-
tion would also be an available (CMod′,OpSpec)-implementation – this is an easy observation
as CMod is equivalent to CMod′.

Lemma 5.6.7. Let Spec = (CMod,OpSpec) be a basic storage specification. Assume that
CMod contains a simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for
some i, 0 ≤ i ≤ len(v), Relvi = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proof Sketch. We assume by contradiction that there is an available implementation IE of
Spec. . We use the visibility formula v to construct a specific program, which by the assump-
tion, admits a trace (in the composition with this implementation) that contains no receive

action. We show that any abstract execution induced by this trace, which is admissible by
any available implementation of Spec, is not valid w.r.t. Spec.

The program P we construct generalizes the litmus programs presented in Figure 5.1. P
uses two replicas r0, r1, two distinguished objects x0, x1 and a collection of events exl

i , 0 ≤
i ≤ n, l ∈ {0, 1}. The events are used to “encode” two instances vx0 and vx1 of the visibility
formula.

Let dv be the largest index i s.t. Relvi = ar (last occurrence of ar). Then, v is formed of
two parts: the path of dependencies from ε0 to εdv which is not arbitration-free, and the suffix
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from εdv up to εlen(v), the arbitration-free part. Thus, v is of the form:

vx(ε0, εn) ::= ∃ε1, . . . , εn−1.

n∧
i=1

(εi−1, εi) ∈ Relvi ∧ ε0 writes x ∧ wr−1
x (εn) ̸= ∅

where n = len(v), Relvi ∈ {so,wr, rb, ar} for i < dv, Relvdv = ar, and Relvi ∈ {so,wr, rb} for
i > dv.

Replica rl executes first events exl
i with i < dv and then, events ex1−l

i with i ≥ dv – the
replica rl executes the non arbitration-free part of v for object xl and the arbitration-free
suffix of v for x1−l. All events in replica rl access (read and/or write) object xl except for exl

n

which reads x1−l. For ensuring that vx(e
xl
0 , . . . e

xl
n ) holds in an induced abstract execution of

a trace without receive actions, we require that if Relvi = wr, then exl
i−1 is a write event and

exl
i is a read event. Figure 5.5 exhibits a diagram of such execution.

Example 5.6.8. We illustrate the construction for Prefix Consistency ( PC) and a Key-Value
store with PUT and GET operations (their specification is defined in Section 5.4.2). PC can be
defined as the following set of simple visibility formulas (obtained from Prefix in Figure 5.4c):

v1x(ε0, ε1) ::= ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧ (ε0, ε1) ∈ so

v2x(ε0, ε1) ::= ε0 writes x ∧ wr−1
x (ε1) ̸= ∅ ∧ (ε0, ε1) ∈ wr

v3x(ε0, ε2) ::= ∃ε1. ε0 writes x ∧ wr−1
x (ε2) ̸= ∅ ∧ (ε0, ε1) ∈ ar ∧ (ε1, ε2) ∈ so

v4x(ε0, ε2) ::= ∃ε1. ε0 writes x ∧ wr−1
x (ε2) ̸= ∅ ∧ (ε0, ε1) ∈ ar ∧ (ε1, ε2) ∈ wr

(5.6)

Observe that v4x is vacuous w.r.t. the specification of PUT and GET since it implies that ε2 reads
from multiple events, and PUT and GET read a single object at a time. Thus, the normal form
of PC w.r.t. the specification of PUT and GET contains only the first three visibility formulas
above.

The only visibility formula which is not arbitration-free is v3x. We have that the index
dv = 1 and we consider the following types of events:

ex0
0 : PUT(x0,_), ex0

1 : PUT(x1,_), ex0
2 : GET(x0)

ex1
0 : PUT(x1,_), ex1

1 : PUT(x0,_), ex1
2 : GET(x1)

Replica r0 executes ex0
0 and then ex1

1 and ex1
2 . Replica r1 executes ex1

0 and then ex0
1 and ex0

2 .

Given such a program P , the proof proceeds as follows:

1. There exists a finite trace t of P ∥ IE that contains no receive action (Lemma 5.7.5):
Since IE is available, it can always delay receiving messages, and execute other actions
instead. Then, as P is a finite program, such an execution must be finite.

2. The trace t induces a history hv = (E, so,wr) and an abstract execution ξv = (h, rb, ar)
where rb = so (ar is arbitrary as long as rb ⊆ ar). As IE is valid w.r.t. Spec, ξv is valid
w.r.t. Spec. Next, we prove that since rb = so, events in ξv read the latest value w.r.t.
so written on their associated object in ξv (Lemma 5.7.6). In particular, we deduce
that all traces of P without receive events induce the same history and therefore, the
induced history does not change when the induced arbitration order changes.
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3. Since ar is a total order, either (ex0
dv−1, e

x1
dv−1) ∈ ar or (ex1

dv−1, e
x0
dv−1) ∈ ar. W.l.o.g., assume

that (ex0
dv−1, e

x1
dv−1) ∈ ar. By Lemma 5.7.7, we deduce that ex0

0 ∈ ctxtx0(e
x0
n , [ξv,CMod]).

The proof is explained in Figure 5.5: if (ex0
dv−1, e

x1
dv−1) ∈ ar, then all events ex0

i form a
path in such way that vx0(e

x0
0 , . . . e

x0
n ) holds in ξv.

4. Since ex0
n is the only event at r1 that reads or writes x0 and events in ξv read

the latests values w.r.t. so in ξv, we deduce that ex0
n reads x0 from init. How-

ever, as ex0
0 ∈ ctxtx0(e

x0
n , [ξv,CMod]) and init precedes ex0

0 in arbitration order, we
deduce that ex0

n does not read the latest value w.r.t. ar, i.e. rspec(ex0
n ) ↓ but

wr−1
x0

(ex0
n ) ̸= {maxar ctxtx0(e

x0
n , [ξv,CMod])}. Therefore, ξv is not valid w.r.t. Spec

(see Definition 5.4.2). This contradicts the hypothesis that IE is an implementation
of Spec.

The corollary below is a direct consequence of Theorem 5.6.3 and Lemma 5.6.4.

Corollary 5.6.9. Let OpSpec be a basic operation specification. The strongest consistency
model CMod for which (CMod,OpSpec) admits an available implementation is CC.

5.7 Proof of the Basic Arbitration-Free Consistency Theorem
The proof ot the Basic Arbitration-Free Consistency Theorem relies on several results from
Section 5.11 about consistency models in normal form. Nevertheless, basic consistency models
are a subclass of the consistency models presented in Section 5.8.

Let in the folloeing Spec = (CMod,OpSpec) be a basic storage specification. We show
that there exists an available Spec-implementation iff CMod is arbitration-free w.r.t. OpSpec.

5.7.1 Arbitration-Freeness Implies Availability
As discussed in Section 5.6, the proof of such result is decomposed in three steps:

1. We show that arbitration-free consistency models w.r.t. OpSpec are weaker than CC
(Lemma 5.6.4).

2. We deduce that available (CC,OpSpec)-implementations are also available
(CMod,OpSpec)-implementations as an immediate consequence of Lemma 5.6.5.

3. We prove that there exists available (CC,OpSpec)-implementations (Lemma 5.6.6).

Lemma 5.6.4. Let Spec = (CMod,OpSpec) be a basic storage specification. If CMod is
arbitration-free w.r.t. OpSpec, then CMod is weaker than CC.

Proof. For showing that CMod is weaker than CC, let h = (E, so,wr) be a history and ξ =
(h, rb, ar) be an abstract execution of h valid w.r.t. Spec. Let n be a consistency model in
normal form that is OpSpec-equivalent to CMod. By Theorem 5.11.1, such model always
exists. As CMod is arbitration-free, every visibility formula v ∈ n is arbitration-free. We
conclude the result by showing that n ≼ CC, i.e. showing that for every object x and every
pair of distinct events e, e′ ∈ E, if vx(e, e′) holds in ξ then vCCx (e, e′) holds in ξ as well; where
vCC is Causal, the visibility formula of CC (Figure 5.4b).
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First, as vx(e, e′) holds in ξ, e writes x in ξ and wr−1
x (e) ̸= ∅. Moreover, as v is simple, for

every i, 1 ≤ i ≤ len(v), Relvi ∈ {so,wr, rb}. By Property 2 of Definition 5.3.4, we deduce that
(e, e′) ∈ rb+. Altogether, we conclude that vCCx (e, e′) holds in ξ.

Lemma 5.6.6. Let OpSpec be a basic operation specification. There exists an available
(CC,OpSpec)-implementation.

Proof. We define an available implementation of SpecCC = (CC,OpSpec).
As discussed in Section 5.5, any implementation IE = (Si, Ai, s

i
0,∆i) can be characterized

by describing its set of states Si, its actions Ai, its initial state σi0 and its transition function
∆i.

First, we define Si as the set of possible values that each object may have; and the declare
the initial state any possible state in Si. Next, we define Ai via the synchronized actions
Events × (Keys × Events ∪ {∅}), as well as the local actions send and receive. We assume
local actions are defined in a similar way to Events, as tuples a = (id, r, op,wval,m), where id
is an action identifier, r is a replica identifier, op an operation identifier, wval is a (partial)
mapping associating each object x with a value v that this event writes to x, and m is
additional metadata of the action. As for events, we use id(a), rep(a), op(a), wval(a) and
md(a) for indicating the identifier, replica, operation, write-value mapping and metadata of
an action a respectively.

For describing its transition function, we rely on the definition of CC. As we design
(Si, Ai, s

i
0,∆i) to be an available SpecCC-implementation, we require that any induced abstract

execution must be valid w.r.t. SpecCC. However, Definition 5.4.2 describes validity “a poste-
riori”, i.e. validity can only be checked once the event is executed; while transition functions
describe validity “a priori”, i.e. describe a procedure to compute a write-read of a given, not
yet added event. For solving this issue, we observe that under CC, that the context of an event
e belonging to a synchronized action a = (e,m) only depends on (a) the transitive set of
received actions before the last action in its replica and (b) the synchronized actions executed
in its own replica. Ensuring transitive communication, i.e. ensuring that every send action on
replica r transmits information about all synchronized actions executed or received on replica
r before such send action suffices to provide CC.

More in detail, for describing the transition function ∆i(t, a), we require that (1) a is not
present in t and (2) transitive communication is ensured. Also, we require a third condition
depending on the type of a:

• if a is a synchronized action, we require that (3a) if a represents a read operation,
a = (e,m), then e must read from the latest writing event w.r.t. ar (which coincides
with the trace order) received before ltr,

• if a is a send action, then (3b) it precedes a synchronized action, and

• if a is a receive action, then (3c) there exists a unique preceding send action that
matches it.

where r = rep(a) and ltr to the last action in trace t whose replica is r.
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On one hand, (1) ensures that ∆i(t, e) is well-defined, i.e. in every trace of ∆i, each
action contains each action exactly once. On the other hand, (2) and (3a) ensure that IE is
a SpecCC-storage implementation while (3b) and (3c) ensure that IE is an available storage
implementation.

Formally, ∆i(t, a) ↓ if and only if a ̸∈ t and sat(t, a) holds; and in such case ∆i(t, a) = t⊕a.
The predicate sat(t, a) is described in Equation (5.7).

sat(t, a)=



a = (e,Mt(e)) if op(a) ̸= send, receive
sendIfData(t, a), if op(a) = send

sendAllData(t, a),
and maxSend(t, a)
minRcv(t, a), if op(a) = receive

and maxRcv(t, a)

(5.7)

where Mt(e) is the mapping assigning to the objext x = obj(e) the last event that
writes on x received by e, formally defined using Equations (5.8) and (5.9); and the predi-
cates sendIfData, sendAllData, maxSend, minRcv and maxRcv are defined in Equations (5.10)
to (5.13).

Mt(e) =

[
x 7→

{
{maxarte E

x
t (e)} if x = obj(e)

∅ otherwise

]
x∈Keys

Ex
t (e) =

{
e′
∣∣∣∣ e′ ∈ Events ∩ t ∧ e′ writes x in exec(t) ∧
(rep(e′) = rep(e) ∨ rect(e

′, e))

}
arte = ar↾Ex

t (e)×Ex
t (e)

(5.8)

rect(e
′, e) = ∃r, s ∈ t s.t.

∧ op(r) = receive, rep(r) = rep(e),
op(s) = send, rep(s) = rep(e′),
rb-Set(s) = rb-Set(r), e′ <t s <t r < e′

(5.9)

sendIfData(t, a) ::= op(a′′) ̸= send (5.10)

where a′′ =max<t

{
a′ ∈ t

∣∣ rep(a′) = rep(a) ∧ op(a′) ̸= receive
}

sendAllData(t, a) ::= ∀a′ ∈ t.rep(a′) = rep(a) ∧ op(a′) ̸= send =⇒ RVx
a′ ⊆ rb-Set(a)

(5.11)

where RVx
a′ =


{e} if op(a′) ̸= send, receive ∧ a′ = (e,_)
rb-Set(a′) if op(a′) = receive

∅ otherwise

maxSend(t, a) ::= ∄a′ ∈ t.op(a′) = send ∧ rb-Set(a) = rb-Set(a′) (5.12)

minRcv(t, a) ::= ∃a′ ∈ t.op(a′) = send ∧ rb-Set(a) = rb-Set(a′) (5.13)

maxRcv(t, a) ::= ∄a′ ∈ t. op(a′) = receive ∧ rep(a) = rep(a′) ∧ rb-Set(a) = rb-Set(a′)
(5.14)
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Note that as IE contains send and receive actions, as well as events along with their write-
read dependencies, IE is a storage implementation. For proving that IE is the searched im-
plementation, we introduce the following notation: for a trace t and an event e ∈ t, prefix(t, e)
to the trace s.t. ∆(prefix(t, e), e) is a prefix of t.

The rest of the proof, showing that IE is an available SpecCC-implementation, is a conse-
quence of Lemmas 5.7.1 to 5.7.3.

Lemma 5.7.1. The implementation IE is an SpecCC-implementation.

Proof. Let PE = (Sp, Ap, s
p
0,∆p) be a program. We prove by induction on the length of all

traces in TPE∥IE that any trace t is feasible and its induced abstract execution is valid w.r.t.
SpecCC. The base case, when t = {(initPE

, initIE )} is immediate as t contains exactly one
event that does not read any object. Hence, let us assume that for any trace t′ ∈ TPE∥IE of at
most length k, exec(t′) is valid w.r.t. SpecCC; and let us show that for any trace t of length
k+1, exec(t) is also valid w.r.t. SpecCC. Let h = (E, so,wr) and ξ = (h, rb, ar) be respectively
the induced history history(t) and the induced abstract execution exec(t) where ar coincides
with the trace order. We denote sr to the induced order between send-receive actions with
the same rb-Set on t. Before proving that ξ is valid w.r.t. SpecCC, we show that t is feasible,
i.e. ξ satisfies Definition 5.3.4.

• rb = rb; so∗: This is immediate by the definition of induced receive-before.

• wr ∪ so ⊆ rb: By definition of rb, so ⊆ rb, so we focus on proving that wr ⊆ rb. Let w, r
be events and x be an object s.t. (w, r) ∈ wrx. In such case, there is a pair of actions
ar, aw s.t. r ∈ ar, w ∈ aw and w ∈ wr-Set(ar)(x). Hence, {w} = maxarte E

x
t (e). We

deduce then that rect(w, r) must hold; which implies that there exists a send action s
and a receive action v s.t. rb-Set(s) = rb-Set(v) and w <t s <t v <t r. By sendAllData
predicate, w ∈ rb-Set(s). As rb-Set(s) = rb-Set(v), w ∈ rb-Set(v). By the definition
of induced abstract execution, (w, r) ∈ rb.

• rb ⊆ ar: For proving that rb ⊆ ar, as rb can be derived by sr and so, it suffices to prove
that both so, sr ⊆ ar. First, as so is the partial order induced by the total order <t on
actions executed on the same replica, so ⊆ ar.

Next, for proving that sr ⊆ ar, let s be a send action and let v be a receive action
s.t. (s, v) ∈ sr. Let us consider ptv = prefix(t, v) be the prefix of t before v. On one
hand, as ptv is a prefix of t′, ∆i(p

t
v, v) ↓. In particular, minRcv(ptv, v) holds; so there is a

send action s′ in ptv s.t. rb-Set(s′) = rb-Set(v). We show that s′ = s. Otherwise, then
w.l.o.g. s <t s

′. Note that ∆i(prefix(t, s
′), s′) ↓ as prefix(t, s′)⊕s′ is a prefix of t′. In such

case, maxSend(prefix(t, s′), s′) does not hold; which is impossible as ∆i(prefix(t, s
′), s′) ↓.

Therefore, s = s′. As s′ ∈ ptv, s precedes v in t; so (s, v) ∈ ar.

After proving that t is feasible, we show that ξ is valid w.r.t. SpecCC. By Definition 5.4.2,
we need to show that for every event r and object x, if rspec(r) ↑, wr−1

x (r) = ∅, and otherwise,
wr−1

x (r) = {maxar ctxtx(r, [ξ, CC])}. Let r be a read event, x be the object it affects and
p = prefix(t, r). We know by Equation (5.8) that wr−1

x (r) = {maxarpr E
x
p (r)}. Observe then
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that by Equation (5.8) and rb’s definition, Ex
p (r) = ctxtx(r, [t, CC]). Thus, we conclude that

wr−1
x (r) = {maxar ctxtx(r, [ξ, CC])}.

Lemma 5.7.2. For every program PE and every trace t of IE ∥ PE, there is no replica waiting
in t.

Proof. Let PE = (Sp, Ap, s
p
0,∆p) be a program, r ∈ Reps be a replica and t ∈ TPE∥IE be a

reachable trace. Let also be t1 ∈ TPE
and t2 ∈ TIE traces s.t. t = (t1, t2). To prove that r

is not waiting in t, let us suppose that there exists an event e ∈ EventsPE
s.t. op(e) ̸= end,

rep(e) = r and ∆PE
(t1, e) ↓, and let us prove that there exists a non-receive action a s.t.

∆IE∥PE
(t, a) ↓.

Let a be the action (e,Mt(e)); where Mt(e) is described using Equation (5.8). We observe
that as ∆PE

(t1, e) ↓, ∆PE∥IE (t, ex) ↓. Moreover, op(a) ̸= receive. Hence, r is not waiting in
t; so IE is available.

Lemma 5.7.3. For every finite program PE, the composition IE ∥ PE is also finite.

Proof. Let PE = (Sp, Ap, s
p
0,∆p) be a finite program. The implementation IE is conditionally

finite on PE if for every trace t ∈ TPE∥IE there exists a constant kt ∈ N s.t. len(t) ≤ kt. Let
thus t ∈ TPE∥IE , t1 ∈ TPE

, t2 ∈ TIE be traces s.t. t = (t1, t2). As PE is finite, the length of t1,
len(t1), is finite. We show that kt ::= 3 · len(t1) is the constant we search.

Three cases arise, depending on the type of action we consider. First, by maxRcv predicate,
the number of receive actions coincides with the number of receive actions with distinct
metadata; which by minRcv, is bounded by the number of send actions in the trace. Then,
by sendIfData, the number of send actions is bounded by the number of synchronized actions.
Finally, by the parallel composition definition, the number of synchronized actions in t and
t1 coincide; so such number is bounded by len(t1). Altogether, we deduce that len(t) ≤
3 · len(t1) = kt.

5.7.2 Availability Implies Arbitration-Freeness
As explained in Section 5.6, we prove the contrapositive: if CMod is not arbitration-free, then
no available Spec-implementation exists. Indeed, if CMod is not arbitration-free, every normal
form CMod′ of CMod contains a simple visibility formula involving ar (see Definition 5.6.2).
By Lemma 5.6.7, such a formula precludes the existence of an available (CMod′,OpSpec)-
implementation. Consequently, there is no available (CMod,OpSpec)-implementation, since
any such implementation would also be an available (CMod′,OpSpec)-implementation – this
is an easy observation as CMod is equivalent to CMod′ (see Theorem 5.11.1).

Proof. We assume by contradiction that there is an available implementation IE of Spec but
CMod contains a visibility formula v s.t. for some i, 0 ≤ i ≤ len(v), Relvi = ar. We use the
latter fact to construct a specific program, which by the assumption, admits a trace (in the
composition with this implementation) that contains no receive action. We show that any
abstract execution induced by this trace, which is admissible by any available implementation
of Spec, is not valid w.r.t. Spec. This contradicts the hypothesis.
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The program P we construct generalizes the litmus program presented in Figure 5.1. P
uses two replicas r0, r1, two distinguished objects x0, x1 and a collection of events exl

i , 0 ≤ i ≤
len(v), l ∈ {0, 1}. The events are used to “encode” two instances vx0 and vx1 of the visibility
formula.

Let dv be the largest index i s.t. Relvi = ar (last occurrence of ar). Then, v is formed
of two parts: the path of dependencies from ε0 to εdv which is not arbitration-free, and the
suffix from εdv up to εlen(v), the arbitration-free part. Thus, v is of the form:

vx(ε0, εlen(v)) ::= ∃ε1, . . . , εn−1.

len(v)∧
i=1

(εi−1, εi) ∈ Relvi ∧ ε0 writes x ∧ wr−1
x (εlen(v)) ̸= ∅

where Relvi ∈ {so,wr, rb, ar}, for all i < dv, Relvdv = ar, and Relvi ∈ {so,wr, rb} for all i > dv.
In the construction, we require that replica rl executes events exl

i if i < dv and events
e
x1−l

i otherwise – the replica rl executes the non arbitration-free part of v for object xl and
the arbitration-free suffix of v for x1−l. All objects in replica rl access (read and/or write) xl
except exl

len(v), which access with x1−l. We denote by x̃xl
i to the unique object that event exl

i

reads and/or writes.
More in detail, we construct a set of events, Ei, histories, hi = (Ei, soi,wri), and execu-

tions, ξi = (hi, rbi, ari), 0 ≤ i ≤ len(v) inductively, starting from an initial event init, and
incorporating at each time a pair of new events, ex0

i and ex1
i . For simplifying notation, we use

the convention init = ex0
−1 = ex1

−1.
For the inductive step, we assume that the abstract execution ξi−1 = (hi−1, rbi−1, ar−1)

associated to the history hi−1 = (Ei−1, soi−1,wri−1) contains events ex0
−1 . . . e

x0
i−1, e

x1
i−1 and

is well-defined (satisfies Definition 5.3.4) and we construct the history hi and the abstract
execution ξi.

We distinguish between cases depending on the value i:

• i = 0: In this case, we consider e0 be an event s.t. wspec(exl
0 )(wval(init)(x̃xl

i )) ↓.

• 0 < i < len(v), Relvi = wr and Relvi+1 = wr: In this case, it is easy to see that by Propo-
sition 5.11.11, OpSpec allows atomic read-write events. We consider exl

i be an event s.t.
rspec(exl

i ) ↓ and wspec(wxl
i )(valuewri−1(wxl

i , x̃
xl
i )) ↓.

• 0 < i < len(v) and Relvi ̸= wr and Relvi+1 = wr: In this case, if OpSpec allows uncondi-
tional writes, then we select exl

i as an unconditional write event on object x̃xl
i . Otherwise,

we select event exl
i s.t. rspec(exl

i ) ↓ and wspec(exl
i )(wval(wxl

i )(x̃xl
i )) ↓.

• 0 < i < len(v) and Relvi+1 ̸= wr: In this case, we select exl
i to not write x̃xl

i unless it is
necessary. If OpSpec allows read events that are not write events, or if allows condi-
tional atomic read-write events, we select exl

i as an event such that rspec(exl
i ) ↓ but

wspec(exl
i )(wval(wxl

i )(x̃xl
i )) ↑. Otherwise, we select event ei such that rspec(exl

i ) ↓ and
wspec(exl

i )(wval(wxl
i )(x̃xl

i )) ↓.

• i = len(v): In this case, we consider exl

len(v) to be an event that reads object x̃xl
i , i.e.

rspec(exl

len(v)) ↓.

132



Section 5.7. Proof of the Basic Arbitration-Free Consistency Theorem

where l ∈ {0, 1} and wxl
i = maxari−1{e ∈ Ei−1 | wspec(e)(obj(exl

i )) ↓ ∧ (e, exl
i ) ∈ soi}. We

note that as init writes on every object, wxl
i is well-defined.

First of all, observe that event exl
i is well-defined thanks to Lemma 5.7.4 and the assump-

tions on OpSpec (Section 5.4.3). We denote Ei = Ei−1 ∪ {ex0
i , e

x1
i }. We observe that w.l.o.g.,

we can assume that the id(ex0
i ) is bigger than every identifier of an event in Ei−1 and that

id(ex0
i ) < id(ex1

i ).
We conclude the description of hi and ξi by specifying the relations soi,wri, rbi, ari. We

require that soi (resp. wri, rbi, ari) contains soi−1 (resp. wri−1, rbi−1, ari−1). Also, we require
additional constrains on them due to event ei:

• soi: We require that (e, exl
i ) ∈ soi iff rep(e) = rep(exl

i ); as well as (init, exl
i ) ∈ soi.

• wri: If exl
i is not a read event, we require that wrixi

−1
(exl

i ) ̸= ∅. Otherwise, we require
that ({wxl

i }, exl
i ) ∈ wrixi

.

• rbi: We require that rbi = soi.

• ari: We impose that for every event e ∈ Ei, (e, exl
i ) ∈ ari. Also, we impose that

(ex0
i , e

x1
i ) ∈ ari.

Then, we define Eventsp = E len(v) as the set our program employs. The set Eventsp induces
the set of traces Tp.

We define the program P = (Sp, Ap, s
p
0,∆p), where initp = init and ∆p is the transition

function defined as follows: for every trace t ∈ Tp and event e ∈ Eventsp, ∆p(t, e) ↓ if and only
if e ̸∈ t and every event in Eventsp whose replica coincide with e and has smaller identifier
than e is included in t.

Given such a program P , the proof proceeds as follows:

1. There exists a finite trace t of P ∥ IE that contains no receive action (Lemma 5.7.5):
Since IE is available, it can always delay receiving messages, and execute other actions
instead. Then, as P is a finite program, such an execution must be finite.

2. The trace t induces a history hv = (E, so,wr) and an abstract execution ξv = (h, rb, ar)
where rb = so (ar is arbitrary as long as rb ⊆ ar). As IE is valid w.r.t. Spec, ξv is valid
w.r.t. Spec. Next, we prove that since rb = so, events in ξv read the latest value w.r.t.
so written on their associated object in ξv (Lemma 5.7.6). In particular, we deduce
that all traces of P without receive events induce the same history and therefore, the
induced history does not change when the induced arbitration order changes.

3. Since ar is a total order, either (ex0
dv−1, e

x1
dv−1) ∈ ar or (ex1

dv−1, e
x0
dv−1) ∈ ar. W.l.o.g.,

assume that (ex0
dv−1, e

x1
dv−1) ∈ ar. By Lemma 5.7.7, we deduce that ex0

0 ∈
ctxtx0(e

x0

len(v), [ξv,CMod]). The proof is explained in Figure 5.5: if (ex0
dv−1, e

x1
dv−1) ∈ ar,

then all events ex0
i form a path in such way that vx0(e

x0
0 , . . . e

x0

len(v)) holds in ξv.

4. Since ex0

len(v) is the only event at r1 that reads or writes x0 and events in ξv read
the latests values w.r.t. so in ξv, we deduce that ex0

len(v) reads x0 from init. How-
ever, as ex0

0 ∈ ctxtx0(e
x0

len(v), [ξv,CMod]) and init precedes ex0
0 in arbitration order, we
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deduce that ex0

len(v) does not read the latest value w.r.t. ar, i.e. rspec(ex0

len(v)) ↓ but
wr−1

x0
(ex0

len(v)) ̸= {maxar ctxtx0(e
x0

len(v), [ξv,CMod])}. Therefore, ξv is not valid w.r.t. Spec

(see Definition 5.4.2). This contradicts the hypothesis that IE is an implementation of
Spec.

Lemma 5.7.4. Let Spec = (CMod,OpSpec) be a storage specification s.t. CMod is in nor-
mal form w.r.t. OpSpec. For every visibility formula v ∈ CMod, there exists an abstract
execution valid w.r.t. Spec, ξ, an object x and events e0, . . . elen(v) s.t. rspec(elen(v)) ↓ and
vx(e0, . . . elen(v)) holds in ξ.

Proof. Let v ∈ CMod be a visibility formula. As CMod is normal form w.r.t. OpSpec, v is
non-vacuous; so CMod ̸≡ CMod \ {v}. Hence, there exists an abstract execution valid w.r.t.
Spec, ξ, an object x and a read event r s.t. ctxtx(r, [ξ,CMod]) ̸= ctxtx(r, [ξ,CMod \ {v}]). As
CMod \ {v} ≼ CMod, we conclude that there exists events e0, . . . elen(v) s.t. r = elen(v) and
vx(e0, . . . elen(v)) holds in ξ.

Lemma 5.7.5. For every available storage implementation, IE, there exists finite reachable
trace t ∈ TP∥IE s.t.

1. t does not contain any action a s.t. op(a) = receive.

2. for every event e ∈ Eventsp there exists exactly one action a ∈ t s.t. ev(a) = e and,

3. for every two actions a, a′ ∈ t in the same replica, if ev(a) ↓, ev(a′) ↓ and id(ev(a)) <
id(ev(a′)), then a <t a

′

Proof. Let IE be an available storage implementation. We construct a sequence of traces
{ti}i∈N s.t. for each i ∈ N (1) ti does not contain any receive action, (2a) for every event
e ∈ Eventsp s.t. id(e) ≤ id(lastrep(e)(π1(t

i))) there is exactly one action a ∈ ti s.t. ev(a) = e,
(2b) for every event e ∈ Eventsp s.t. id(e) > id(lastrep(e)(π1(t

i))) there is no action a ∈ ti
s.t. ev(a) = e, and (3) for every two actions a, a′ ∈ t, if ev(a) ↓, ev(a′) ↓ and id(ev(a)) <
id(ev(a′)), then a <ti a

′.
Let t0 = initP∥IE be the first trace of our sequence. Clearly, t0 satisfy properties (1), (2a),

(2b) and (3). Then, let n ∈ N and, assuming that the trace tn satisfy properties (1), (2a), (2b)
and (3), we define tn+1. If for every replica r and every event e ∈ Eventsp, ∆p(π1(t

n), e) ↑, we
define tn+1 = tn. If not, let rn be a replica and en ∈ Eventsp be an event s.t. ∆p(π1(t

n), en) ↓.
As IE is available, there exists an action an s.t. op(a′n) ̸= receive and ∆P∥IE (t

n, an) ↓. We
then define tn+1 = ∆P∥IE (t

n, an).
By induction hypothesis on tn, tn satisfies properties (1), (2a), (2b) and (3). We show

that tn+1 also satisfies (1), (2a), (2b) and (3). Without loss of generality, we assume that
tn+1 ̸= tn as otherwise the result immediately holds. First, as tn satisfies (1) and an is not a
receive action, tn+1 satisfies property (1). Properties (2a) and (2b) immediately hold from
the definition of ∆P∥IE .

Finally, for proving that tn+1 satisfies (3), let a, a′ ∈ tn be distinct actions s.t. ev(a) ↓,
ev(a′) ↓ and id(ev(a)) < id(ev(a′)). If a, a′ ̸= an, as tn satisfies (3), a <tn a

′ and therefore,
a <tn+1 a′. Otherwise, note that as tn satisfies (2b), for every event e ∈ π1(t

n), id(e) ≤
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id(ev(an)). Moreover, as no two events in Eventsp have identical identifier, traces do not
contain the same event twice and a ̸= a′, we deduce that a′ = an. As an = lastrn(t

n+1), we
conclude that a <tn+1 a′.

By construction, t∞ is a trace in TP∥IE . As P is finite and IE is available, every trace
t ∈ TP∥IE is finite. We show by contradiction that there exists some k ∈ N s.t. tk = tk+1.
Consider the sucession of traces {tn}n∈N and let us assume that tk ̸= tk+1 for any k ∈ N. In
such case, we define t∞ as the limit of such sucession, i.e., the trace obtained by executing
events actions ai, 0 ≤ i ≤ N (which are well-defined by construction). Such infinite trace
belongs to TP∥IE . However, as P is finite and IE is available, every trace t ∈ TP∥IE is finite.
Thus, t∞ must be finite; which contradicts its construction. Hence, such k exists.

We show that the trace tk is the searched trace. Clearly, as tk satisfies (1) and (3), it
suffices to prove that it also satisfies (2). On one hand, as tk = tk+1, for every event e ∈ P ,
∆p(π1(t

k), e) ↑. Hence, for every replica rl, l ∈ {0, 1}, lastr(π1(tk)) = e
x1−l

len(v). By construction
of Eventsp, every event e ∈ Eventsp with replica rl has smaller identifier than ex1−l

len(v). Therefore,
as tk satisfies (2a), there is exactly one action a′ ∈ tk s.t. ev(e′) = e; so tk satisfies (2).

Lemma 5.7.6. For every pair of indices i,−1 ≤ i ≤ len(v), l ∈ {0, 1},

• If exl
i is a read event, then ({wxl

i }, exl
i ) ∈ wrx̃xl

i
.

• If exl
i is a write event s.t. wval(exl

i )(x̃xl
i ) ↓, then wspec(exl

i )(wval(wxl
i )(x̃xl

i )) ↓.

Proof. We prove the result by induction on i; where the base case, i = −1, trivially holds.
For showing the inductive case, let us assume that the result holds for every event exl′

i′ ,−1 ≤
i′ < i, l′ ∈ {0, 1}, and let us show it for events ex0

i , e
x1
i . We divide the proof in two blocks,

whether exl
i is a read event, and exl

i is a write event.
For the first part, we note that by construction of ξv using Lemma 5.7.5 we know that ξv

does not contain any receive event, rb = so. Hence, as ξv is valid w.r.t. Spec, wr ⊆ rb =
so. Thus, exl

i reads x̃xl
i from an event that precedes it in session order. In particular, by

Definition 5.4.2, wr−1

x̃
xl
i

(exl
i ) = {maxar ctxtx̃xl

i
(exl

i , [ξv,CMod])}; so wr−1

x̃
xl
i

(exl
i ) = {wxl

i }.
For the second part, we can assume w.l.o.g. that exl

i is a conditional write, as oth-
erwise the result immediately holds. By the choice of exl

i , in this case, we conclude that
wspec(exl

i )(wval(wxl
i )(x̃xl

i )) ↓.

Lemma 5.7.7. For every l ∈ {0, 1}, if (exl
dv−1, e

x1−l

dv−1) ∈ ar, then exl
0 ∈

ctxtxl
(exl

len(v), [ξv,CMod]).

Proof. For proving that exl
0 ∈ ctxtxl

(exl

len(v), [ξv,CMod]), we show that vxl
(exl

0 , e
xl

len(v)) holds in
ξv. Observe that by the choice of events and Lemma 5.7.6 exl

0 writes xl in ξv and wr−1
xl

(exl

len(v)) ̸=
∅ holds in ξv. Therefore, to conclude the result, we prove that for every i, 1 ≤ i ≤ len(v),
(exl

i−1, e
xl
i ) ∈ Relvi .
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For proving it, we observe that CMod is in simple form. Thus, for every i, 1 ≤ i ≤ len(v),
Relvi is either so,wr, rb or ar; which simplify our analysis. First, if i = dv, by definition of
dv, Relvi = ar. By hypothesis, (exl

dv−1, e
x1−l

dv−1) ∈ ar. In such case, as id(e
x1−l

dv−1) < id(exl
dv
) and

rep(e
x1−l

dv−1) = rep(exl
dv
), (ex1−l

dv−1, e
xl
dv
) ∈ so. Therefore, as so ⊆ ar and ar is a transitive relation,

we deduce that (exl
dv−1, e

xl
dv
) ∈ ar.

Next, if i ̸= dv, we notice that (ex0
i−1, e

x0
i ) ∈ so ⊆ rb ⊆ ar. Hence, if Relvi is either so, rb or

ar, the result immediately holds. Otherwise, if Relvi = wr, we show that ex0
i is a read event

and ex0
i−1 = wx0

i ; which let us conclude that (ex0
i−1, e

x0
i ) ∈ wr thanks to Lemma 5.7.6.

First, we show that if i ̸= len(v) and Relvi = wr, then wxl
i = exl

i−1. Thanks to the choice of P ,
if Relvi = wr, then exl

i is a write event s.t. wval(exl
i−1)(x̃

xl
i ) ↓. By Lemma 5.7.6, we deduce that

exl
i−1 writes x̃xl

i−1 in ξv. As i ̸= len(v), x̃xl
i−1 = x̃xl

i . Also, as Relvi = wr, rep(exl
i ) = rep(exl

i−1).
Altogether, we deduce that exl

i−1 is an event writing x̃xl
i that is the immediate predecessor of

exl
i w.r.t. so. Hence, wxl

i = exl
i−1.

Finally, we show that Relvlen(v) ̸= wr and conclude the result. We prove the contrapositive,
that if Relvlen(v) = wr, v is vacuous w.r.t. Spec. If Relvlen(v) = wr, for every abstract execution
ξ′ valid w.r.t. Spec, object x and a collection of events f0, . . . flen(v), if vx(f0, . . . , flen(v)) holds
in ξ′, then (flen(v)−1, flen(v)) ∈ wr. Thus, ξ′ is valid w.r.t. (CMod \ {v},OpSpec). Hence, v is
vacuous w.r.t. OpSpec.

5.8 Generalized Distributed Storage Specifications
We describe a generalization of the basic storage specifications from Section 5.4 along three
dimensions: a larger class of consistency models, multi-object operations, and more general
read behaviors. To rule out anomalous behaviors in this generalization, we introduce a set
of additional assumptions. Figure 5.6 summarizes the structure of storage specifications and
the relationship between basic and generalized specifications in terms of assumptions.

Basic Storage Specification

Basic Operation Specification

rspec and wspec
Operation closure (Sec. 5.4.2)

Reading from a single visible write:
Reading from maxar (Sec. 5.4.2)

Writing to a single object:
Every value enables and disables some
conditional read-write event (Sec. 5.4.2)

Visibility formulas (Eq. 5.2)

Basic Consistency Model

Storage Specification

Operation Specification

rspec (Def. 5.8.4), extract (Def. 5.8.5) and wspec (Def. 5.8.6)
Operation closure (Sec. 5.8.4)

Reading from multiple visible writes:
Maximally-layered rspec (Sec. 5.8.4)

Writing to multiple objects:
∃ execution-correctors (Def. 5.8.13)

Consistency Model

Visibility formulas with conflict predicates (Eq. 5.15)
Causal-suffix closure (Sec. 5.8.1)

B
as

ic
ca

se

G
en

er
al

ca
se

Figure 5.6: Conceptual map relating basic and generalized storage specifications (Sections 5.4
and 5.8). Storage specifications are composed of consistency models and operation specifi-
cations. Assumptions are written in bold text. Arrows denote how definitions/assumptions
translate from the basic case to the general case.
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5.8.1 Consistency Models
The set of basic consistency models (Section 5.4.1) does not include (parallel) snapshot iso-
lation, and the version of k-bounded staleness considered in Section 5.2. Snapshot Isolation,
k-Bounded Staleness and Parallel Snapshot Isolation are defined, respectively, using the vis-
ibility formulas Conflict (Figure 5.7a), k-Bounded (Figure 5.7b)5, and n-PSI (Figure 5.7c).

e ε2 writes y

ε0
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ε1

writes y

wrx

ar∗

ar
ar
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Figure 5.7: Conflict, k-Bounded and n-PSI visibility formulas used to define Snapshot Isolation
(SI), Bounded Staleness (BS) and Parallel Snapshot Isolation (PSI). SI is defined by Prefix
(Figure 5.4c) and Conflict, BS is defined by k-Bounded and Return-Value (Figure 5.4a), and
PSI is defined by Causal (Figure 5.4b) and the set of visibility formulas {n-PSI | n ≥ 1}.

To include such consistency models in our formalization, we extend the syntax of visibility
formulas so that the intermediate events can be further constrained via the wrCons formula:

vx(ε0, εn) ::= ∃ε1, . . . , εn−1.
n∧

i=1

(εi−1, εi) ∈ Relvi ∧ wr−1
x (εn) ̸= ∅ ∧ wrConsvx(ε0, . . . εn) (5.15)

The formula wrConsvx(ε0, . . . εn) is a conjunction of predicates conflict(E) and conflictx(E)
with E ⊆ {ε0, . . . εn}. The predicate conflict(E) (resp., conflictx(E)) means that all the events
in E write on some object y (resp., the object x). Since we want to preserve the constraint
ε0 writes x from basic visibility formulas, we require that there exists a set E ⊆ {ε0, . . . εn}
s.t. ε0 ∈ E and conflictx(E) is included in wrConsvx(ε0, . . . εn) (E can be the singleton ε0).
The interpretation of a conflict predicate in an abstract execution ξ is done as expected: a
predicate conflict(E) (resp., conflictx(E)) holds iff there exists an object y s.t. for every e ∈ E,
e writes y in ξ (resp. e writes x in ξ). As before, the predicate ε writes y is true iff wval(e)(y) ↓.

From this point on, a consistency model is defined as a set of visibility formulas, as in
Equation (5.15).
Normal Form. We generalize the normal form of a consistency model to take into account
conflict predicates. A consistency model in normal form only contains visibility formulas

5Our version of k-Bounded Staleness corresponds to the (k, T )-Bounded Staleness with T = ∞ as defined
in [2].
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that are simple, non-vacuous and “conflict-maximal”. A conflict-strengthening of a visibil-
ity formula v is a visibility formula v′ obtained from v by (1) replacing some occurrence of
conflict(E) (resp., conflictx(E)) with conflict(E′) (resp., conflictx(E

′)) where E′ is a strict
superset of E or (2) removing predicate conflict(E) if conflictx(E) also belongs to v. A visi-
bility formula v is conflict-maximal w.r.t. OpSpec iff there is no conflict-strengthening v′ such
that for every execution ξ over events in Events[OpSpec], object x, and events e0, . . . elen(v),
if vx(e0, . . . elen(v)) holds in ξ, then v′x(e0, . . . elen(v)) holds in ξ as well. A consistency model
CMod is conflict-maximal w.r.t. OpSpec iff all its visibility formulas are conflict-maximal
w.r.t. OpSpec.

For example, if Relvi = wr, any instance of εi must write on some object y. In conflict-
maximal visibility formulas, this fact is represented with a conflict predicate (conflict(E) or
conflictx(E)) s.t. εi−1 ∈ E. If OpSpec requires that every event reading y also writes on y,
then in a conflict-maximal visibility formula, both εi−1, εi belong to E. In general, if in any
abstract execution, the events instantiating εi1 , . . . , εij from vx always conflict (resp. they
always write x), then the visibility formula v must contain the predicate conflict(εi1 , . . . , εij )
(resp. conflictx(εi1 , . . . , εij )).

Definition 5.8.1. A consistency model CMod is called in normal form w.r.t. a operation
specification OpSpec if it contains only simple, conflict-maximal visibility formulas and no
visibility formula from CMod is vacuous w.r.t. OpSpec.

Under some operation specifications, consistency models can be equivalent due to conflict
predicates. For example, in a storage with only FAA operations, SI and SER are equivalent
due to the Conflict visibility formula: in this specification, every event is both a read and a
write event and so any event reading x conflicts with an event writing x.

Similarly to Section 5.6, we say that a consistency model CMod is arbitration-free w.r.t.
an operation specification OpSpec if there exists a consistency model in general normal form
w.r.t. OpSpec that is equivalent to CMod and whose visibility formulas are arbitration-free.
Section 5.11 demonstrates the existence of a normal form and shows that it is not possible for
two normal forms to differ solely in that one includes only arbitration-free visibility formulas
while the other does not. This result confirms that arbitration-freedom is not a property of

the chosen normal form, but rather an inherent characteristic of the definitions of CMod and
OpSpec.
Causal Suffix Closure. We introduce an assumption about consistency models which is
used in the proof of the AFC theorem in order to find counterexamples to availability that
involve only two replicas. This assumption is satisfied by all practical cases that we are aware
of (see Example 5.8.3).

Therefore, we assume that every normal form CMod of a consistency model is closed under
causal suffixes, i.e., for every visibility formula vx ∈ CMod, CMod contains every arbitration-
free “suffix” of vx that starts with an event writing x. Thinking about a visibility formula v as
a path of dependencies (between the pairs (εi−1, εi)), a suffix of v is a suffix of that path. For
example, the visibility formulas s and s′ described in Equation (5.17) and Equation (5.18) are
suffixes of the visibility formula in Equation (5.16).
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vx(ε0, ε3) = ∃ε1, ε2.(ε0, ε1) ∈ rb ∧ (ε1, ε2) ∈ ar ∧ (ε2, ε3) ∈ so ∧
wr−1

x (ε3) ̸= ∅ ∧ conflictx(ε0, ε1, ε2) (5.16)

sx(ε1, ε3) = ∃ε2.(ε1, ε2) ∈ ar ∧ (ε2, ε3) ∈ so ∧ wr−1
x (ε3) ̸= ∅ ∧ conflictx(ε1, ε2) (5.17)

s′x(ε2, ε3) = (ε2, ε3) ∈ so ∧ wr−1
x (ε3) ̸= ∅ ∧ conflictx(ε2) (5.18)

Formally, let vx be a visibility formula defined as in Equation (5.15). Let conflictx(vx) be
the union of the sets E such that conflictx(E) occurs in the definition of vx. For any variable
εk ∈ conflictx(vx), the εk-suffix of vx is the formula obtained by (1) removing the quantifiers
for the first k quantified events, e1 . . . ek, and (2) removing all occurrences of the (now) free
variables e0, . . . ek−1, i.e.:

suffx(vx, k)(εk, εn) ::= ∃εk+1, . . . , εn−1.

n∧
i=k+1

(εi−1, εi) ∈ Relvi

∧wr−1
x (εn) ̸= ∅ ∧ wrConsvx(εk, . . . εn)

where wrConsvx(εk, . . . εn) is obtained from wrConsvx(ε0, . . . εn) by projecting all the conflict
predicates over the set of events Ek = {εk, . . . , εn}, i.e., a predicate conflict(E) (resp.
conflictx(E)) occurs in wrConsvx(ε0, . . . εn) iff conflict(E ∩ Ek) (resp. conflictx(E ∩ Ek)) oc-
curs in wrConsvx(εk, . . . εn).

We refer to arbitration-free suffixes as causal, since the remaining dependencies intuitively
reflect broader notions of causality. The intuition behind this notion of closure is that the
context of an invocation should be upward-closed with respect to causality—meaning that if
an update (writing x) is included, then any later updates (writing x) along the dependency
path defined by the visibility formula that lie in its causal past must also be included.

We say that a visibility formula v′ subsumes a visibility formula v of the same length if
for every i, 1 ≤ i ≤ len(v), Relv

′
i is stronger or equal than Relvi . We say that rb is stronger

than so and wr, and ar is stronger than rb, so and wr. The extension of “being stronger” to
any relation Rel described using Equation (5.3) is done as expected, as all our operators are
positive (there are no negations).

Definition 5.8.2. A consistency model CMod is closed under causal suffixes if for every
vx ∈ CMod and εk ∈ conflictx(vx), CMod includes some visibility formula v′ that subsumes
every arbitration-free suffix of v.

Example 5.8.3. A consistency model containing the visibility formula v in Equation (5.16)
must also contain the visibility formula s′ in order to be closed under causal suffixes. Note
that s uses arbitration and it is not required to be included.

Any basic consistency model is closed under causal suffixes because every basic visibility
formula has no proper arbitration-free suffix. Indeed, conflictx(vx) contains just the first event
ε0 (assuming that ε0 writes x is rewritten as conflictx({ε0})). The models described in Fig-
ures 5.4 and 5.7 are trivially closed under causal suffixes because their visibility formulas have
no arbitration-free suffixes.
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5.8.2 Operation Specifications
We generalize operation specifications to allow operations to access (read or write) multiple
objects, and to support read values that are not limited to the inputs of individual write
operations. For example, this includes multi-value reads that return all concurrently written
values for an object, or counter reads that return an aggregated value computed from all
observed increments.

The generalized reading behavior is modeled using two functions rspec and extract de-
scribed hereafter. We also introduce a generalized wspec function. Therefore, rspec selects
from a given context the events (updates) which are relevant for a reading invocation, extract
defines the value read by an invocation, if any (based on the output of rspec), and wspec
defines the value written by an invocation, if any (to model conditional read-writes, this is
based on the output of extract).

Definition 5.8.4. A read specification rspec : Events → Keys → Contexts → P(Events) is a
function such that for every object x, context c = (E, rb, ar) and event e:

1. well-formedness: rspec(e)(x, c) ⊆ E, and if e is an initial event, rspec(e)(x, c) = ∅, and

2. unconditional reading: if rspec(e)(x, c) ̸= ∅ for some context c, then for every non-empty
context c′, rspec(e)(x, c′) ̸= ∅

Equations (5.19) to (5.21) describe the read specifications of faacas, a key-value store
k-mv with PUT(x, v) and multi-value GET(x) operations (Section 5.9.2), and a collection of
distributed counters counter with inc(x) and rd(x) operations (Section 5.9.3). Concerning
the relationship to basic read specifications, note that the faacas specification in Equation (5.4)
was simpler because the constraint from Equation (5.19) was imposed in the notion of validity
for abstraction executions (Definition 5.4.2). For multi-value reads (Equation (5.20)), the
read specification selects the maximal elements in the receive-before relation (which models
causality), and for a counter (Equation (5.21)), it returns all events in the context.

rspec(r)(x, c) =

{
{maxar E}, if r ∈ {GET(x), FAA(x, v), CAS(x, v, v′)} and c = (E, rb, ar)
∅, otherwise

(5.19)

rspec(r)(x, c) =

{
maxrbE, if r = GET(x) and c = (E, rb, ar)
∅, otherwise (5.20)

rspec(r)(x, c) =

{
E, if r = rd(x) and c = (E, rb, ar)
∅, otherwise (5.21)

The extract specification below computes the value returned from an object x based on
the set of invocations writing x returned by the read specification which are paired with values
they write (this will become clearer when defining the application of these functions on an
abstract execution).

Definition 5.8.5. An extract specification extract : Events → Keys → P(Events × Vals) →
Vals, such that extract(init) is defined for every initial event init.
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Equation (5.22) describes the extract specification of faacas: the value extracted for GET,
FAA and CAS coincides with the value written by some previous PUT/FAA/CAS operation. Equa-
tion (5.23) describes the extract specification of k-mv: the value extracted for GET is the set
of values written by some previous PUT. In the case of counter, Equation (5.24), the value
extracted for rd returns the number of increment invocations in the input, which equals |R|
minus one for the initial event init which is always included in R (since it is so before all
other events).

extract(r)(x,R) =


v if r ∈ {GET(x), FAA(x, v′), CAS(x, v′, v′′)}

and R = {(w, v)}
undefined otherwise

(5.22)

extract(r)(x,R) =

{
{v | (_, v) ∈ R} if r = GET(x)
undefined otherwise (5.23)

extract(r)(x,R) =

{
|R| − 1 if r = rd(x)
undefined otherwise (5.24)

Finally, the write specification computes the value written by an invocation to an object
x, based on the values it reads. This makes it possible to model atomic read-writes, e.g., a
compare-and-swap, which may write or not depending on what they read, or the value they
write may change depending on what they read, e.g., a Fetch-and-Add.

Definition 5.8.6. A write specification wspec : Events → Keys → Vals → Vals is a function
such that wspec(init) is defined for every initial event init.

The write specification of faacas and k-mv, Equation (5.25), describes that its write op-
erations are PUT, FAA and CAS. PUT and FAA unconditionally writes on x while CAS does it
depending on the read-and-extracted value of x; where x is the only object accessed by the
invocation. In the case of counter, Equation (5.27), only the operation inc(x) writes, writing
a dummy value 1 just to indicate that the write has taken place.

wspec(w)(x, v) =


v′ if w = PUT(x, v′)
v + v′ if w = FAA(x, v′)
v′′ if w = CAS(x, v′, v′′) ∧ v = v′

undefined otherwise

(5.25)

wspec(w)(x, v) =

{
v′ if w = PUT(x, v′)
undefined otherwise (5.26)

wspec(w)(x,_) =

{
1 if w = inc(x)
undefined otherwise (5.27)

Definition 5.8.7. An operation specification is a tuple OpSpec = (E, rspec, extract,wspec)
where E is a set of events. Events[OpSpec] refers to the set of events E in an operation
specification.

Section 5.9 contains more examples of operation specifications, including SQL statements.
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5.8.3 Validity w.r.t. Storage Specifications
We extend the notion of validity for abstract executions to (general) storage specifications, in
a way that is similar to the case of basic storage specifications (Section 5.4.3).

We use the extension of rspec, extract, and wspec to abstract executions defined below:

rspec(e)(x, [ξ,CMod]) = rspec(e)(x, ctxtx(e, [ξ,CMod]))

extract(e)(x, [ξ,CMod]) = extract(e)
(
x,
{
(e′, wval(e)(x))

∣∣ e′ ∈ rspec(e)(x, [ξ,CMod])
})

wspec(e)(x, [ξ,CMod]) = wspec(e)(x, extract(e)(x, [ξ,CMod]))

Definition 5.8.8. Let Spec = (CMod,OpSpec) be a storage specification. An abstract execu-
tion ξ = (h, rb, ar) of a history h = (E, so,wr) is valid w.r.t. Spec iff

• ξ contains events from the operation specification, i.e., E ⊆ Events[OpSpec],

• for every event r ∈ E, wr−1
x (r) = rspec(r)(x, [ξ,CMod]), and

• the value written by each event e ∈ E to object x is consistent with wspec, i.e.,
wval(e)(x) = wspec(e)(x, [ξ,CMod]).

A history h is valid w.r.t. Spec iff there exists an abstract execution of h which is valid w.r.t.
Spec.

Observe that Definition 5.8.8 coincides with Definition 5.4.2 for storage systems that also
admit basic storage specifications, e.g., faacas.

5.8.4 Assumptions About Operation Specifications
To avoid pathological behaviors in the generalization of specifications, we make several as-
sumptions.
Maximally-Layered Read Specifications. For any basic operation specification OpSpec,
the validity of an abstract execution w.r.t. a stronger consistency model (and OpSpec) im-
plies validity w.r.t. a weaker one (see Lemma 5.6.5). In general, this is not true for operation
specifications as described in this section (see Example 5.8.9). Therefore, we introduce an as-
sumption about read specifications, called maximally-layered, which ensures that this property
remains true.

Example 5.8.9. Let OpSpec = (E, rspec, extract,wspec) be an operation specification of a key-
value store with GET and PUT operations whose read specification is given by Equation (5.28).

rspec(e)(x, c) =

{
{maxar E} if ∄e′ ∈ E s.t. rep(e) ̸= rep(e′) and c = (E, rb, ar)
init otherwise (5.28)

We compare the validity of the abstract execution ξ depicted in Figure 5.8 w.r.t. SC and
CC (observe that CC ≼ SC). Under SC both e0 and e1 are visible to e2, which implies
rspec(e2)(x, [ξ, SC]) = {init}. Therefore, ξ is valid w.r.t. SC. However, under CC, only
e1 is visible to e2, which implies rspec(e2)(x, [ξ, CC]) = {e1}, and therefore, ξ is not valid
w.r.t. CC.
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{x : 0}
init

PUT(x, 1)

e0

PUT(x, 2)

e1

GET(x)

e2

so so

so

wrx

(a) History of a key-value store with PUT and GET.

{x : 0}
init

PUT(x, 1)

e0

PUT(x, 2)

e1

GET(x)

e2

ar rb arrb

ar
rb ar

(b) An abstract execution of the history in Fig-
ure 5.8a.

Figure 5.8: A history and an abstract execution of the operation specification in Example 5.8.9.
For readability, we omit the so and wr relations from the abstract execution. Events e1 and
e2 are executed in the same replica, different from e0’s replica.

Let ≤ be a partial order over a set A. A chain of ≤ is a subset of A which is totally
ordered w.r.t. ≤. The layer of an element a ∈ A is the size of the largest chain of ≤ which
includes a but no elements smaller than a, and a maximal element. For instance, the layer of
a maximal element is 1 (the aforementioned largest chain includes just the element itself), the
level of a strict predecessor of a maximal element is 2, and so on. A subset B ⊆ A is called
k-maximally layered w.r.t. ≤ if B is the set of all elements in A of layer k′ ≤ k. When ≤ is
also a total order, the notion of maximally layered is equivalent to being upward closed w.r.t.
≤. Otherwise, it is equivalent to being upward closed w.r.t. every total extension of ≤.

A read specification rspec is k-maximally layered w.r.t. ar (resp. rb+) if for every object x,
context c = {E, rb, ar}, and event e, either rspec(e)(x, c) = ∅ or rspec(e)(x, c) is k-maximally
layered w.r.t. ar (resp. rb+). The layer bound of rspec is defined as k. To cover cases where
there is no such k, we say that a read specification rspec is ∞-maximally layered if for every
x, context c = {E, rb, ar}, and event e, either rspec(e)(x, c) = ∅ or E; and we say that the
layer bound is ∞. When the layer bound and the partial order (ar or rb+) are irrelevant, we
simply say that rspec is maximally layered.

Example 5.8.10. For example, faacas is 1-maximally layered w.r.t. ar, k-mv is 1-maximally
layered w.r.t. rb+ and counter is ∞-maximally layered. On the other hand, the read specifi-
cation in Example 5.8.9 is not maximally layered since it can sometimes return init from a
non-empty context.

Lemma 5.8.11. Let OpSpec be a maximall-layered operation specification and let
CMod1,CMod2 be a pair of consistency models such that CMod2 is stronger than CMod1.
Any abstract execution valid w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Operation Closure. As in Section 5.4.2, we assume that OpSpec contains at least a read
and a write event. Also, we assume that all objects support a common set of operations
with identical read and write behavior, and that these operations can be executed at any
replica. Formally, for every event e ∈ E, replica r, and identifier id, there exists an event e′

s.t. rep(e′) = r, id(e′) = id, obj(e′) = obj(e), rspec(e′) = rspec(e), extract(e′) = extract(e),
and wspec(e′) = wspec(e).
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We also assume that operations apply uniformly to any set of objects. To formalize this
assumption, we define a notion of domain for an operation specification OpSpec which is any
set of objects D s.t. there is an event e ∈ Events[OpSpec] for which obj(e) = D. We assume
that domains are “symmetric”, i.e. if D is a domain for OpSpec, then for every pair of objects
x ∈ D and y ∈ Keys \D, the set D′ = D \ {x} ∪ {y} is also a domain for OpSpec. If OpSpec
allows single-object read/write/read-write events (defined as in Section 5.4.2), we assume that
for every object x, there exists a read/write/read-write event whose domain is {x}. Also, we
assume that if OpSpec allows a multi-object read/write/read-write event e such that obj(e) is
a finite set of size at least 2, then for every non-empty finite set D ⊆ Keys, D is a domain of
a read/write/read-write event in OpSpec.
Correctors. In addition, we assume that if OpSpec permits conditional read-write events–
which write to a set of objects X based on values they read (possibly from other objects)
in some context–then any execution can be extended with some conditional read-write event
e that writes to every object in X, modulo a so-called correction defined below. This prop-
erty is only relevant for events with |obj(e)| > 1 (and therefore, irrelevant for basic storage
specifications). Our proof will rely on the existence of such extensions.

Example 5.8.12. To provide some intuition about the need for corrections, consider a speci-
fication formed of prefix consistency (PC) and an operation specification with two multi-object
operations, InsAbs and DelPre, under Last-Writer-Wins (LWW) conflict resolution (i.e., the
read specification selects the maximal invocation from the context w.r.t. ar) (see Section 5.9.4).
InsAbs(X, v) checks for every object x ∈ X if it is present, and inserts it with value v if not,
and DelPre(X) deletes every object x ∈ X as long as it was present.Assume an abstract exe-
cution ξ, and an event e from ξ whose context implies that x is absent and y is present. If e
is an invocation of InsAbs (resp., DelPre), then it can not write both objects since x is absent
and y is present.

We introduce the notion of corrector, a set of auxiliary events that modify the context,
ensuring the existence of an event that can write to both objects. For instance, in the scenario
presented in Example 5.8.12, if e is an invocation of InsAbs({x, y}, 1), the corrector will add
a DelPre({y}) invocation in its context, so both objects are absent.

We start by defining some notations. Let Spec = (CMod,OpSpec) be a storage speci-
fication, ξ = (h, rb, ar) an abstract execution of a history h = (E, so,wr), and e ∈ E an
event. A correction of e in ξ with an event a, denoted by ξ

a
⋎ e, is an abstract execution

ξ′ = (h′, rb′, ar′) associated to a history h′ = (E ∪ {a}, so′,wr′) obtained by adding a as the
immediate rb-predecessor and ar-predecessor of e. If rep(e) = rep(a), then a is also the im-
mediate so-predecessor of e. The write-read dependencies (wr−1) of every event in ξ remain
the same. Multiple corrections exist because the write-read and receive-before dependencies
of a are not constrained. This allows flexibility on correcting ξ while preserving validity w.r.t.
Spec.

The correction of ξ with a sequence of events s⃗ = (a1, a2, . . .), denoted by ξ
s⃗
⋎ e, is defined

as expected, by iteratively correcting ξ with all events in s⃗ in the order defined by s⃗. Therefore,

if e′ is the immediate ar-predecessor of e in ξ, the ar order in ξ
s⃗
⋎ e will have a1, a2, . . . inserted

in between e′ and e (in this order). Similarly for rb and possibly for so.
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For a (partial) mapping f : A→ B and a total order < over A, the sequence of elements
in B mapped by f and ordered according to < is denoted by seq<(f). Formally, seq<(f) =
(f(a1), f(a2), . . .) such that f(ai) ↓ and ai < ai+1 for all i. We omit the subscript < when it
is understood from the context.

Also, if ξ is an abstract execution, then ξ ⊕ e is an abstract execution obtained from ξ by
appending e to ξ as the last event w.r.t. ar.
Corrector Assumption. If OpSpec allows conditional read-writes, then we assume that for
every domain D, W ⊆ D, x ∈ Keys s.t. x ∈ W if W ̸= ∅, and abstract execution ξ, there
exists

1. a conditional read-write e with obj(e) = D which is not contained in ξ, and

2. a partial mapping a : D \ {x} → Events called execution-corrector for event e in an
abstract execution ξ ⊕ e.

We define execution-correctors as follows.

Definition 5.8.13. Let Spec = (CMod,OpSpec) be a storage specification, ξ an abstract
execution, e a conditional read-write event from ξ with obj(e) = D, W ⊆ D a set of objects,
and x ∈ D an object s.t. x ∈ W if W ̸= ∅. Also, let < be a fixed total order on the set of
objects. An execution-corrector for (e,W, x, ξ) is a partial mapping a : D\{x} → Events such
that if

ξ′ = ξ
seq(a)
⋎ e and ξ′ ↾ y = (ξ

seq(a↾y)
⋎ e) \ {e} where a ↾ y = a ↾{z∈Dom(a) | z≤y},

then the following hold:

1. for every y ∈ D \ {x}, if a(y) is defined and the correction up to a(y) is valid w.r.t.
Spec, then a(y) writes only y in the correction: if a(y) ↓ and ξ′ ↾ y is valid w.r.t. Spec,
then for every object z ∈ Keys, wspec(a(y))(z, [ξ′ ↾ y,CMod]) ↓ iff z = y, and

2. for every y ∈ D, if the correction is valid w.r.t. Spec, then e reads y and additionally,
e writes y only if y ∈ W , i.e., rspec(e)(y, [ξ′,CMod]) ̸= ∅ and wspec(e)(y, [ξ′,CMod]) ↓
iff y ∈W .

Example 5.8.14. We illustrate execution-correctors for the storage specification presented in
Example 5.8.12, with InsAbs and DelPre as operations and PC as consistency model.

Let ξ be an abstract execution, e a DelPre(D) event from ξ, W ⊆ D a non-empty set of
objects and x ∈ W . For every object y, let wy be the last event from the “read” context of
e w.r.t. PC which writes y (by read context we mean the set of events selected by rspec from
the context). In the following we assume that wx is an insert event. Note that if wx is a
delete event, then there exists no execution-corrector for e (intuitively, the correction concerns
objects different from x, and DelPre(D) will not delete an object which is already deleted).

An execution-corrector for (e,W, x, ξ) is the mapping a : D \ {x} → Events defined below.
The mapping a observes the update on y made by wy, and overwrites it when necessary. Thus,
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when e reads y, y is present iff y ∈W .

a(y) =


InsAbs({y}, v) if y ∈W and wy deletes y in ξ
DelPre({y}) if y ̸∈W and wy inserts y in ξ
undefined otherwise

(5.29)

Observe that requiring that a is defined for all objects in D is too strict: if the read
specification has a layer-bound of 1 and the events read a single object (as faacas), any
correction will change the entire context read by e.

5.9 Examples of Operation Specifications
We present a list of well-know operation specifications and show that the satisfy the assump-
tions described in Section 5.8.4.

5.9.1 Key-Value Store with Fetch-And-Add and Compare-And-Swap Op-
erations

The Key-Value Store with Fetch-And-Add and Compare-And-Swap (faacas) is an operation
specification with four operations, PUT(x, v), that puts value v to object x, GET(x) that reads
object x, FAA(x, v) that reads the value v′ of object x and writes v′+v, and CAS(x, v, v′), that
reads x and writes v′ iff the value read is v.

The following equations, corresponding to Equations (5.19), (5.22) and (5.25), describe
the operation specification of faacas.

rspec(r)(x, c) =


{maxar E} if r ∈ {GET(x), FAA(x, v), CAS(x, v′, v′′)}

and c = (E, ar, rb)
∅ otherwise

(5.30)

extract(r)(x,R) =


v if r ∈ {GET(x), FAA(x, v), CAS(x, v, v′)}

and R = {(w, v)}
undefined otherwise

(5.31)

wspec(w)(x, v) =


v′ if w = PUT(x, v′)
v + v′ if w = FAA(x, v′)
v′′ if w = CAS(x, v′, v′′) ∧ v = v′

undefined otherwise

(5.32)

The faacas is maximally layered w.r.t. ar, with 1 as its layer bound. As CAS is a single-
object conditional read-write operation, it trivially allows execution-correctors.

5.9.2 Key-Value Multi-Value Store
The Key-Value Multi-Value Store (k-mv) [41, 19] is an operation specification with two oper-
ations, GET(x), reading multiple concurrent values on a single object x, and PUT(x, v), writing
on a single object x the value v.

The following equations, corresponding to Equations (5.20), (5.22) and (5.25), describe
the operation specification of k-mv.

rspec(r)(x, c) =

{
{maxrbE} if r = GET(x) and c = (E, ar, rb)
∅ otherwise (5.33)
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extract(r)(x,R) =

{
{v | (_, v) ∈ R} if r = GET(x)
undefined otherwise (5.34)

wspec(w)(x,_) =

{
v if w = PUT(x, v)
undefined otherwise (5.35)

The k-v is maximally layered w.r.t. rb+, with 1 as its layer bound.

5.9.3 Distributed Counter
The distributed counter (counter) [41] is an operation specification with two operations,
inc(x), incrementing the value of x by 1, and rd(x), reading the amount of increments of x.

The following equations, corresponding to Equations (5.21), (5.24) and (5.27), describe
the operation specification of counter.

rspec(r)(x, c) =

{
E if r = rd(x) and c = (E, ar, rb)
∅ otherwise (5.36)

extract(r)(x,R) =

{
|R| − 1 if r = rd(x)
undefined otherwise (5.37)

wspec(w)(x,_) =

{
1 if w = inc(x)
undefined otherwise (5.38)

The counter is maximally layered w.r.t. ar, with ∞ as its layer bound.

5.9.4 Insert/Delete Last-Write-Wins
The Insert/Delete Last-Write-Wins (ins/del) is an operation specification with two multi-
object operations. InsAbs(X, v) checks for every object x ∈ X if it is present, and inserts
it with value v if not, and DelPre(X) deletes every object x ∈ X as long as it was already
present.

Its operation specification is described as follows:

rspec(r)(x, c) =


{maxar E} if r ∈

{
InsAbs(X, v), DelPre(X)

}
,

x ∈ X and c = (E, ar, rb)
∅ otherwise

(5.39)

extract(r)(x,R) =


v if w ∈ {InsAbs(X,_), DelPre(X)},

x ∈ X and R = {(_, v)}
undefined otherwise

(5.40)

wspec(w)(x, v) =


v′ if w = InsAbs(X, v′) ∧ v = †
† if w = DelPre(X) ∧ v ̸= †
undefined otherwise

(5.41)

where † is a special value representing absence. We assume that InsAbs(X, †) is not defined.
The ins/del is maximally layered w.r.t. ar, with 1 as its layer bound. ins/del allows

execution-correctors: let CMod be a consistency model, ξ be an abstract execution, D be a
domain, W ⊆ D be a set of objects and x be an object s.t. x ∈W if W ̸= ∅.
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Let be v the value that event e reads in ξ ⊕ e. If v = †, we select e = InsAbs(D,_) while
otherwise, e = DelPre(D). The mapping a below is an execution-corrector for (e,W, x, ξ):

a(y) =


InsAbs({y}, v′) if y ∈W ∧ vy = † ≠ v, or y ̸∈W ∧ vy = † = v
DelPre({y}) if y ∈W ∧ vy ̸= † = v, or y ̸∈W ∧ vy ̸= † ≠ v
undefined otherwise

(5.42)

where vy = wspec(ep)(y, [ξ,CMod]) and ep is the maximal event w.r.t. so on the same replica
as e.

5.9.5 Non-Transactional SQL with Last-Writer-Wins Store
The Non-Transactional SQL with Last-Writer-Wins Store (simple-SQL) is an operation spec-
ification modelling SQL-like databases [9]. Each object represents a row identifier and the set
of values is defined abstractly as Rows. Rows contain a special value denoted †, different from
⊥, indicating that the row is deleted.

This operation specification employs four operations: INSERT, SELECT, UPSERT and
DELETE. Each operation has a finite set of objects D as domain. INSERT(R) inserts in the
database each row r on an object d ∈ D using the mapping R : D → Rows. SELECT(p) selects
the rows on the storage satisfying the predicate p : D × Rows → {false, true}. UPSERT(p, U)
updates the rows that satisfy p using the mapping U : D × Rows → Rows, inserting them if
they are absent. Finally, DELETE(p), deletes the objects satisfying the predicate (i.e. replaces
its row by †). We assume that in for any predicate p and object x, p(x, †) = false.

rspec(r)(x, c) =


{maxar E} if r ∈ {SELECT(p), UPSERT(p, U), DELETE(p)}

and c = (E, ar, rb)
∅ otherwise

(5.43)

extract(r)(x,R) =

 v
if r ∈ {SELECT(p), UPSERT(p, U), DELETE(p)},
R = {(w, v)} and px(v)

undefined otherwise
(5.44)

wspec(w)(x, v) =


R(x) if w = INSERT(R)
Ux(v) if w = UPSERT(p, U)
† if w = DELETE(p) ∧ v ̸∈ {⊥, †}
undefined otherwise

(5.45)

The simple-SQL is maximally layered w.r.t. ar, with 1 as its layer bound. simple-SQL
allows execution-correctors: let CMod be a consistency model, ξ be an abstract execution, D
be a domain, W ⊆ D be a set of objects and x be an object s.t. x ∈W if W ̸= ∅.

Let be v the value that event e reads in ξ⊕e. We select the event e = UPSERT(pD,W , UD),
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where pD,W and UD are defined below.

pD,W (d, r) =


true if d ∈W
false if d ∈ D \W
undefined otherwise

UD(d, r) =

{
r if d ∈ D
undefined otherwise

For such event, we define the execution-corrector a : D \ {x} → Events as the totally-
undefined mapping, i.e. the function that no object y ∈ D is associated with some event.

5.9.6 Transactional SQL Multi-Value Store
The Transactional SQL Multi-Value Store (SQL-mv) is an operation specification modelling
SQL-like databases using transactions. Each object represents a row identifier and the set of
values, Rows, is defined as in Section 5.9.5.

Transactions are blocks of simple instructions that are executed sequentially. Transactions
start its execution by selecting a snapshot of the database (i.e. a mapping associating each
object a constant value) from which operations can read. Each instruction may execute
a writing operation, but its effect it is only viewed internally. After their completion, the
writing effects of the transaction can be seen by other transactions; giving the impression of
atomicity.

We model the store with the aid of a unique operation, TRANSACTION(body) that reads
the snapshot of the database and then executes the instructions declared in C. C is defined as
a sequence of five type of operations: INSERT, SELECT, UPDATE and DELETE. Each operation
has a finite set of objects D as domain. INSERT(R) inserts in the database each row r on an
object d ∈ D using the mapping R : D → Rows. SELECT(p) selects the rows on the storage
satisfying the predicate p : D × Rows → {false, true}. UPDATE(p, U) updates the rows that
satisfy p using the mapping U : D × Rows → Rows. Finally, DELETE(p), deletes the objects
satisfying the predicate (i.e. replaces its row by †). abort represents states declared by the
user where the transaction should not execute any more instructions and any declared write
should be aborted. We assume that in for any predicate p and object x, p(x, †) = false.

We model snapshots as mappings Keys → Vals. Unlike in Section 5.9.5, SQL-mv requires
that local effects of SQL-like instructions are only seen internally, during the execution of
the transaction. Such effects are modelled in Equation (5.46) as a recursive function that
simulates the transaction execution w.r.t. a concrete object. The function exe executes one
instruction at a time, and it stops whenever all instructions are executed, indicating that the
execution was correct, or halting it midway in case some abortion occurred (modelled with
the constant value ⊥).

exex(body, σ) =


exex(body

′, σ′) if body = e; body′, σ′ = exIx(e, σ) and σ′ ̸= (⊥, false)
σ if body = ∅
(⊥, false) otherwise

(5.46)
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The behavior of each instruction is modelled in Equation (5.47), updating the snapshot in
object x in a similar way as wspec does in Section 5.9.5, and indicating if the event e indeed
wrote object x.

exIx(e, (σ,w)) =



(σ,w) if e = SELECT(p)
(σ,w) if e = DELETE(p) ∧ ¬px(σ)
(†, true) if e = DELETE(p) ∧ px(σ)
(σ,w) if e = UPDATE(p, U) and either ¬px(σ) or Ux(σ) ↑
(Ux(σ), true) if e = UPDATE(p, U), px(σ) ∧ Ux(σ) ↑
(σ,w) if e = INSERT(R) ∧ R(x) ↑
(R(x), true) if e = INSERT(R) ∧ R(x) ↓
(⊥, false) if e = abort

(5.47)
The operation specifications of SQL-mv are an adaptation of those of k-mv:

rspec(r)(x, c) =

{
{maxrbE} if r = TRANSACTION(body) and c = (E, ar, rb)
∅ otherwise (5.48)

extract(r)(x,R) =

{
σ′ if r = TRANSACTION(body), σ = {(v, false) | (w, v) ∈ R}

and σ′ = exex(body, σ)
(5.49)

wspec(w)(x, σ) =

{
v if r = TRANSACTION(body), and σ = (v, true)
undefined otherwise (5.50)

The SQL-mv operation specification is maximally layered w.r.t. rb+, with 1 as its layer
bound. SQL-mv allows execution-correctors: let CMod be a consistency model, ξ be an
abstract execution, D be a domain, W ⊆ D be a set of objects and x be an object s.t. x ∈W
if W ̸= ∅.

We define e = TRANSACTION(SELECT(pD); INSERT(RW )), where pW and UD are defined
below.

pD(d, r) =

{
true if d ∈ D
undefined otherwise

RW (d) =

{
_ if d ∈ D
undefined otherwise

where _ indicates some arbitrary unspecified value.
For such event, we define the execution-corrector a : D \ {x} → Events as the totally-

undefined mapping, i.e. the function that no object y ∈ D is associated with some event.

5.10 The Arbitration-Free Consistency Theorem
We now present our main result in its most general form, which extends Theorem 5.6.3.
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Theorem 5.10.1 (Arbitration-Free Consistency (AFC)). Let Spec = (CMod,OpSpec)
be a storage specification. The following statements are equivalent:

1. CMod is arbitration-free w.r.t. OpSpec,

2. there exists an available OpSpec-implementation.

The proof of (1)⇒ (2) is very similar to that in Theorem 5.6.3 (see Section 5.6.1). The only
difference is replacing Lemma 5.6.5 with Lemma 5.8.11 where we use the maximally-layered
assumption of read specifications. For the reverse, we follow the reasoning explained in the
beginning of Section 5.6.2 to reduce to consistency models in normal form. Lemma 5.10.2
extends the arguments in Lemma 5.6.7 to generalized storage specifications.

Lemma 5.10.2. Let Spec = (CMod,OpSpec) be a storage specification. Assume that CMod
contains a simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some
i, 0 ≤ i ≤ len(v), Relvi = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proof Sketch. As in Lemma 5.6.7, we assume by contradiction that there is an available im-
plementation IE of Spec. We use the visibility formula v to construct a specific program,
which by the assumption, admits a trace (in the composition with this implementation) that
contains no receive action. We show that any abstract execution induced by this trace,
which is admissible by any available implementation of Spec, is not valid w.r.t. Spec. This
contradicts the hypothesis.

Let dv be the largest index i s.t. Relvi = ar (last occurrence of ar). Then, v is formed of
two parts: the path of dependencies from ε0 to εdv which is not arbitration-free, and the suffix
from εdv up to εlen(v), the arbitration-free part.

The program P that we construct uses two replicas r0, r1, two objects x0, x1 and a collec-
tion of events exl

i , 0 ≤ i ≤ len(v), l ∈ {0, 1}. The events are used to “encode” two instances of
vx0 and vx1 . Replica rl executes first events exl

i with i < dv and then, events ex1−l

i with i ≥ dv
– the replica rl executes the non arbitration-free part of v for object xl and the arbitration-free
suffix of v for x1−l. For every l, the event exl

len(v) reads x1−l.
For ensuring that vx(exl

0 , . . . e
xl
n ) holds in an induced abstract execution of a trace without

receive actions, we require that if Relvi = wr, then exl
i−1 is a write event and exl

i is a read
event. For ensuring that wrConsvx(e0, . . . elen(v)) holds in such an abstract execution, for each
set E ∈ P(ε0, . . . elen(v)) s.t. conflict(E) occurs in v, we consider a distinct object yE , which is
also distinct from x0 and x1. These objects represent each conflict in v in a distinct manner.
Then, we require that events exl

i write to object yE iff εi ∈ E and to object xl iff εi belongs
to the set Ex s.t. conflictx(Ex) occurs in v (since v is conflict-maximal, there is only one
occurrence of a conflictx predicate). In the case exl

i is a conditional read-write, we add a set
of events Axl

i that form an execution-corrector so conflictx(e
xl
0 , . . . e

xl

len(v)) holds in an abstract
execution of a trace without receive actions. These additional events do not write on objects
x0 or x1.

Figure 5.9 exhibits a diagram of the abstract execution of the program.
The rest of the proof, which proceeds as follows, is a generalization of the proof of

Lemma 5.6.7 which takes into considerations the assumptions we make about storage speci-
fications:
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Figure 5.9: Abstract execution of a trace without receive actions for the visibility formula v.
Axl
i represents a sequence of events axl

i (y), y ∈ obj(exl
i ) associated to an execution-corrector.

The auxiliary events in Axl
i allow that, if (ex0

dv−1, e
x1
dv−1) ∈ ar, wrConsvx(e

x0
0 , . . . e

x0

len(v)) holds,
and thus vx0(e

x0
0 , e

x0

len(v)) holds as well.

1. There exists a finite trace t of P ∥ IE that contains no receive action (Lemma 5.7.5).

2. The trace t induces a history hv = (E, so,wr) and an abstract execution ξv = (h, rb, ar)
where rb = so. As IE is valid w.r.t. Spec, ξv is valid w.r.t. Spec. Next, we prove that
since rb = so, events in ξv read the latests value w.r.t. so for any object. In particular,
we deduce that ξv is valid w.r.t. (CC,OpSpec) (Corollary 5.12.5).

3. Since ar is a total order, either (ex0
dv−1, e

x1
dv−1) ∈ ar or (ex1

dv−1, e
x0
dv−1) ∈ ar. W.l.o.g.,

assume that (ex0
dv−1, e

x1
dv−1) ∈ ar. By Proposition 5.12.6, we deduce that ex0

0 ∈
ctxtx0(e

x0

len(v), [ξv,CMod]). The proof is explained in Figure 5.9: if (ex0
dv−1, e

x1
dv−1) ∈ ar,

then all events ex0
i form a path in such way that vx0(e

x0
0 , . . . e

x0

len(v)) holds in ξv. If some
event exl

i is a conditional read-write event, the predicate conflictx(e
x0
0 , . . . e

x0

len(v)) holds
in ξv thanks to the corrector events Axl

i .

4. As ex0
0 ∈ ctxtx0(e

x0

len(v), [ξv,CMod]) but (ex0
0 , e

x0

len(v)) ̸∈ rb (no message is received), we
deduce in Proposition 5.11.16that OpSpec is layered w.r.t. ar. By contrapositive, if
OpSpec would be layered w.r.t. rb, as ex0

0 ∈ ctxtx0(e
x0

len(v), [ξv,CMod]), there would
exist an event e s.t. (ex0

0 , e) ∈ rb and e ∈ rspec(ex0

len(v))(x0, [ξv,CMod]). However, as
rb = so, rep(ex0

0 ) = rep(e) = rep(ex0

len(v)) which is false because rep(ex0
0 ) = r0 and
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rep(ex0

len(v)) = r1.

5. Since rspec is maximally layered, we can show that the layer bound of rspec is smaller
than or equal to the number of arbitration-free suffixes of v (Proposition 5.11.17). Ob-
serve that an event writes x0 only if it is init or is an event exl

i s.t. εi ∈ Ex and l = 0.
Any such index i corresponds to a suffix of v. By causal suffix closure, for any arbitration-
free suffix v′ of v there is a visibility formula that subsumes v′ in nCModOpSpec. As dv
is the maximum index for which Relvi = ar, the number of events writing x0 in replica
r1 distinct from init coincide with the number of arbitration-free suffixes of v. Hence,
as rspec is layered w.r.t. ar, if its layer bound would be greater than the number of
arbitration-free suffixes, ex0

len(v) would necessarily read x0 from init (other events writ-
ing x0 are in replica r0 and elen(v) only reads from events in r1). However, as rspec is
maximally-layered and ex0

0 succeeds init w.r.t. ar and rb+, we would conclude that
ex0

len(v) would also read x0 from ex0
0 . However, this is impossible as wr ⊆ rb = so but ex0

0

is in replica r0 and ex0

len(v) is in replica r1.

6. Lastly, we show in Proposition 5.11.18 that if the layer bound of rspec is smaller
than or equal to the number of arbitration-free suffixes of v, then v is vacuous w.r.t.
OpSpec, which contradicts the fact that v is a visibility formula from the normal form
nCModOpSpec.

Corollary 5.10.3 is an immediate consequence of Theorem 5.10.1 and Lemma 5.6.4.

Corollary 5.10.3. Let OpSpec be an operation specification. The strongest consistency model
CMod for which (CMod,OpSpec) admits an available implementation is CC.

5.11 Normal Form of a Consistency Model w.r.t. an Operation
Specification

In this section, we prove the existence of a consistency model in normal form equivalent to
a given one (Theorem 5.11.1), and we show as well that arbitration-freeness is well-defined
(Theorem 5.11.9), i.e. that either all its normal forms are arbitration-free or none.

For compare consistency models when restricted to an operation specification OpSpec,
we introduce the notion of OpSpec-equivalence. Two consistency models CMod1, CMod2 are
OpSpec-equivalent, denoted CMod1 ≡OpSpec CMod2, if for every abstract execution of OpSpec,
ξ, ξ is valid w.r.t. (CMod1,OpSpec) iff ξ is valid w.r.t. (CMod2,OpSpec). In particular, if
CMod1 and CMod2 are equivalent, they are also OpSpec-equivalent. The converse is not true:
vacuous visibility formulas under an operation specification OpSpec may not be vacuous for
every possible operation specification.

5.11.1 Existence of a Normal Form of a Consistency Model
Theorem 5.11.1 states the existence of a normal form of a consistency model w.r.t. OpSpec.

Theorem 5.11.1. Let OpSpec be an operation specification. For every consistency model
CMod, there exists a consistency model that is in normal form w.r.t. OpSpec and that is
OpSpec-equivalent to CMod.
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The proof of such result is divided in three parts, proving the existence of a consistency
model with only simple visibility formulas (Lemma 5.11.4), proving that such model can be
refined for removing vacuous visibility formulas (Lemma 5.11.7) and finally, showing that
conflict-maximality can be assumed without loss of generality (Lemma 5.11.8).
Monotonicity

Maximally-layered operation specifications are monotonic. Intuitively, an operation spec-
ification is monotonic if (1) the values that are not read under a consistency model CMod1
should be also not read under a stronger model CMod2, and (2) whenever some values are read
under a consistency model CMod1 but not under a stronger one CMod2, some other values
must be read under CMod2 which were not visible under CMod1.

Definition 5.11.2. Let OpSpec = (E, rspec, extract,wspec) be an operation specification.
OpSpec is called monotonic if for every pair of consistency models CMod1,CMod2, CMod1 ≼
CMod2, abstract execution ξ, event r ∈ ξ, and object x the following hold:

1. rspec(r)(x, [ξ,CMod2]) ⊆ rspec(r)(x, [ξ,CMod1]) ∪ (ctxtx(r, [ξ,CMod2]) \
ctxtx(r, [ξ,CMod1])).

2. if rspec(r)(x, [ξ,CMod1]) \ rspec(r)(x, [ξ,CMod2]) ̸= ∅, then rspec(r)(x, [ξ,CMod2]) \
ctxtx(r, [ξ,CMod1]) ̸= ∅

Lemma 5.11.3. A maximally-layered operation specification is monotonic.

Proof. Let OpSpec be a maximally-layered operation specification, CMod1,CMod2 be two
consistency models s.t. CMod1 ≼ CMod2, ξ be an abstract execution, r be an event in ξ and
x be an object. Observe that by the unconditional read property of OpSpec (Property 2 of
Definition 5.8.4), we can assume w.l.o.g. that r is a read event.

On one hand, we observe that if the layer bound of OpSpec is ∞, OpSpec is trivially
monotonic: as r is a read event and the layer bound of OpSpec is∞, rspec(r)(x, [ξ,CMod2]) =
ctxtx(r, [ξ,CMod2]) and rspec(r)(x, [ξ,CMod1]) = ctxtx(r, [ξ,CMod1]). Using the fact that
ctxtx(r, [ξ,CMod1]) ⊆ ctxtx(r, [ξ,CMod2]), is easy to see that Properties 1 and 2 hold in this
case.

On the other hand, if the layer bound of OpSpec, k, is finite, let R be the relation for which
OpSpec is k-maximally layered. For proving Property 1 of Definition 5.11.2, let us partition
ctxtx(r, [ξ,CMod2]) in the three disjoint sets C1, C2 and C3 described in Equation (5.51).

C1 := rspec(r)(x, [ξ,CMod1])
C2 := ctxtx(r, [ξ,CMod1]) \ rspec(r)(x, [ξ,CMod1])
C3 := ctxtx(r, [ξ,CMod2]) \ ctxtx(r, [ξ,CMod1])

(5.51)

We note that by Property 1 of Definition 5.8.4, we know that rspec(r)(x, [ξ,CMod1]) ⊆
ctxtx(r, [ξ,CMod1]). As CMod1 ≼ CMod2, we deduce that rspec(r)(x, [ξ,CMod1]) ⊆
ctxtx(r, [ξ,CMod2]); so {C1, C2, C3} is indeed a partition of ctxtx(r, [ξ,CMod2]). Observe that
showing Property 1 of Definition 5.11.2 is equivalent to show that rspec(r)(x, [ξ,CMod2]) ⊆
C1 ∪ C3. By Property 1 of Definition 5.8.4, rspec(r)(x, [ξ,CMod2]) ⊆ ctxtx(r, [ξ,CMod2]) =
C1 ∪ C2 ∪ C3. We conclude the result by showing that C2 ∩ rspec(r)(x, [ξ,CMod2]) = ∅.
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For showing it, we observe that the layer of an event w in ctxtx(r, [ξ,CMod1]) is less or
equal than the layer of w in ctxtx(r, [ξ,CMod2]): as ctxtx(r, [ξ,CMod1]) ⊆ ctxtx(r, [ξ,CMod2]),
every chain of events in ctxtx(r, [ξ,CMod1]) containing w and ordered w.r.t. R belongs to
ctxtx(r, [ξ,CMod2]). Thus, as OpSpec is maximally layered, an event w in C2 does not belong
to rspec(r)(x, [ξ,CMod2]): if w ∈ C2, its layer in ctxtx(r, [ξ,CMod1]) is greater than k; so
it is also greater than k in ctxtx(r, [ξ,CMod2]). Hence, as OpSpec has k as layer bound,
w ̸∈ rspec(r)(x, [ξ,CMod2]).

For proving Property 2, we observe that if there exists an event w in the set
rspec(r)(x, [ξ,CMod1]) \ rspec(r)(x, [ξ,CMod2]), then the layer of w in ctxtx(r, [ξ,CMod2])
is greater than k. Let k′ be the layer of w and let {ei}k′i=1 be a chain of R of length
k′ s.t. ek′ = w. As the layer of w in ctxtx(r, [ξ,CMod1]) is k and R is a partial order,
there exists an event ei, 1 ≤ i ≤ k s.t. ei ∈ C3. We observe that as the layer of w
is k, the layer of event ei is i. Hence, as rspec is k-maximally layered, we conclude that
ei ∈ rspec(r)(x, [ξ,CMod2]) \ ctxtx(r, [ξ,CMod1]).

Lemma 5.8.11 shows that for maximally-layered operation specifications, ensuring a strong
consistency criteria is enough for ensuring a weaker one. The proof relies on the fact that
maximally-layered operation specifications are monotonic (Lemma 5.11.3).

Lemma 5.8.11. Let OpSpec be a maximall-layered operation specification and let
CMod1,CMod2 be a pair of consistency models such that CMod2 is stronger than CMod1.
Any abstract execution valid w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Proof. Let h = (E, so,wr) be a history and let CMod1 and CMod2 be two consistency mod-
els s.t. CMod1 ≼ CMod2. Let also ξ = (h, rb, ar) be an abstract execution that witness
the validity of h w.r.t. (CMod2,OpSpec). To prove that ξ also witnesses h’s validity w.r.t.
(CMod1,OpSpec), by Definition 5.8.8, it suffices to prove that for every event r ∈ h and object
x, wr−1

x (r) = rspec(r)(x, [ξ,CMod1]).

• wr−1
x (r) ⊆ rspec(r)(x, [ξ,CMod1]): Let w be a write event in wr−1

x (r). As (w, r) ∈ wrx,
w ∈ ctxtx(r, [ξ,CMod1]). Moreover, as ξ witnesses h’s validity w.r.t. CMod2, wr−1

x (r) =
rspec(r)(x, [ξ,CMod2]). Hence, as w ∈ rspec(r)(x, [ξ,CMod2]) ∩ ctxtx(r, [ξ,CMod1]), by
Property 1 of Definition 5.11.2, w ∈ rspec(r)(x, [ξ,CMod1]).

• wr−1
x (r) ⊇ rspec(r)(x, [ξ,CMod1]): Let w ∈ rspec(r)(x, [ξ,CMod1]) s.t. w ̸∈

rspec(r)(x, [ξ,CMod2]). By property 2 from Definition 5.11.2, there exists
w′ ∈ rspec(r)(x, [ξ,CMod2]) s.t. w′ ̸∈ ctxtx(r, [ξ,CMod1]). However, as
rspec(r)(x, [ξ,CMod2]) = wr−1

x (r) ⊆ ctxtx(r, [ξ,CMod1]), this is impossible. Therefore,
rspec(r)(x, [ξ,CMod1]) ⊆ rspec(r)(x, [ξ,CMod2]) = wr−1

x (r).

An immediate consequence of Lemma 5.8.11 is the following result.

Lemma 5.6.5. Let OpSpec be a basic operation specification, and let CMod1,CMod2 be a pair
of basic consistency models s.t. CMod2 is weaker than CMod1. Any abstract execution valid
w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).
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Simple Form
For proving Theorem 5.11.1, we first prove the existence of a consistency model in simple

form (i.e. a consistency model with all its visibility formulas are simple) that is equivalent to
CMod.

Lemma 5.11.4. For any consistency model CMod, there exists a consistency model in simple
form that is equivalent to CMod.

Intuitively, the proof of Lemma 5.11.4 is as follows: we first unfold union and transitive
closure operators, and then trim id and compositional operators to obtain a consistency
model in simple form. As an intermediate step, we define the consistency model obtained
after unfolding union and transitive closure operators. Such consistency model is the almost
simple form of CMod, almost(CMod), and it is described as the union of the almost simple
form of each of its visibility formulas, i.e. almost(CMod) =

⋃
v∈CMod almost(v). A visibility

formula a belongs to the almost simple form of a visibility formula v, a ∈ almost(v) if (1)
len(v) = len(a) and (2) for every i, 1 ≤ i ≤ len(v), Relai ∈ σ(Relvi ); where σ(Reliv) is the set of
relations described as follows:

σ(R) =


{R} if R = id, so,wr, rb or ar
σ(S) ∪ σ(T) if R = S ∪ T
σ(S);σ(T) if R = S;T⋃

k∈N∧k≥1 σ(S)
k if R = S+

(5.52)

where the composition of two sets of relations A,B is defined as A;B ::= {a; b | a ∈ A, b ∈ B}.
We prove that CMod and almost(CMod) are equivalent.

Proposition 5.11.5. For any consistency model CMod, CMod and almost(CMod) are equiv-
alent.

Proof. For proving the result, we show that for any abstract execution ξ, object x and event
r, ctxtx(r, [ξ,CMod]) = ctxtx(r, [ξ, almost(CMod)]). In particular, it suffices to prove that
for every visibility formula v ∈ CMod and event w, vx(w, r) holds in ξ iff there exists a
visibility formula a ∈ almost(v) s.t. ax(w, r) holds in ξ. Observe that for every a ∈ almost(v),
len(v) = len(a); so we reduce the proof to show that for every pair of events e, e′, (e, e′) ∈ Relvi
iff there exists R′ ∈ σ(Relvi ) s.t. (e, e′) ∈ R′.

In the following, we prove that for every relation R over pair of events obtained by the
grammar described in Equation (5.3), the following holds: (e, e′) ∈ R iff there exists R′ ∈ σ(R)
s.t. (e, e′) ∈ R′. We show the result by induction on the depth of R6. The base case, when the
depth of R is 0, refers to the case R = id, so,wr, rb, ar. In such case, the result immediately
holds by the definition of σ(R).

Let us assume that for any relation of depth at most n the result holds, and let us prove
that for relations of depth n+ 1. Three alternatives arise:

• If R = S ∪ T, (e, e′) ∈ R if and only if (e, e′) ∈ S ∪ T. By induction hypothesis on both
S and T, (e, e′) ∈ S ∪ T iff there exists R′ ∈ σ(S) ∪ σ(T) s.t. (e, e′) ∈ R′. Finally, by

6By depth of R we mean the depth of the tree obtained by deriving R using Equation (5.3).
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Equation (5.52), we conclude that there exists R′ ∈ σ(S) ∪ σ(T) s.t. (e, e′) ∈ R′ if and
only if there exists R′ ∈ σ(R) s.t. (e, e′) ∈ R′.

• If R = S;T, (e, e′) ∈ R if and only if (e, e′) ∈ S;T. By the definition of composition,
(e, e′) ∈ S;T iff there exists e′′ s.t. (e, e′′) ∈ S and (e′′, e′) ∈ T. By induction hypothesis
on both S and T, there exists e′′ s.t. (e, e′′) ∈ S and (e′′, e′) ∈ T iff there exists e′′ and
relations S′ ∈ σ(S),T′ ∈ σ(T) e′′ s.t. (e, e′′) ∈ S′ and (e′′, e′) ∈ T′. By the definition
of σ(S);σ(T ), we observe that there exists e′′ and relations S′ ∈ σ(S),T′ ∈ σ(T) e′′ s.t.
(e, e′′) ∈ S′ and (e′′, e′) ∈ T′ iff there exists relation R′ ∈ σ(S;T) s.t. (e, e′) ∈ R′. Finally,
by Equation (5.52), we conclude that there exists relation R′ ∈ σ(S;T) s.t. (e, e′) ∈ R′

if and only if there exists R′ ∈ σ(R) s.t. (e, e′) ∈ R′.

• If R = S+, (e, e′) ∈ R if and only if there exists k ∈ N+ s.t. (e, e′) ∈ Sk. By the previous
point, there exists k ∈ N+ s.t. (e, e′) ∈ Sk if and only if there exists k ∈ N+ and relation
S′ ∈ σ(S)k s.t. (e, e′) ∈ S′. Finally, by Equation (5.52), we conclude that there exists
k ∈ N+ and relation S′ ∈ σ(S)k s.t. (e, e′) ∈ σ(S)k if and only if there exists relation
R′ ∈ σ(R) s.t. (e, e′) ∈ R′.

Obtaining a consistency model in simple form from a consistency model in almost simple
form is straightforward: every visibility formula is transformed by splitting composed relations
into simpler subrelations and omitting id by merging two existentially quantified events.
Lemma 5.11.4 formally describes such procedure.

Lemma 5.11.4. For any consistency model CMod, there exists a consistency model in simple
form that is equivalent to CMod.

Proof. We construct a consistency model, simple(CMod), that is in simple form and it is
equivalent to CMod. The model is formally defined as follows:

simple(CMod) = {simple(a) | a ∈ almost(CMod)} (5.53)

where simple(a) is the simple visibility formula of a.
The simple visibility formula of a visibility formula in almost form a is the visibility formula

f obtained by supressing id and compositional operators. Formally, f is the visibility formula
s.t. (1) len(f) =

∑len(a)
i=1 count(Relai ) and (2) for every i, 1 ≤ i ≤ len(f), Relfi = rel(Relaj , i−kj);

where j is the maximum index s.t. kj < i and kj =
∑j

l=1 count(Rel
a
l ), and count and rel are

the functions described in Equation (5.54) and Equation (5.55) respectively.
The function count counts the number of additional quantifiers the correspondant simple

form requires:

count(R) =


0 if R = id

1 if R = so,wr, rb or ar
count(S) + count(T) if R = S;T

(5.54)
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Also, the function rel, given a relation using compositional operator and an index i, returns
the i-th component:

rel(R, i) =


R if R = so,wr, rb or ar
rel(S, i) if i ≤ count(S)
rel(T, i− count(S)) otherwise

(5.55)

By construction, simple(CMod) is in simple form. Clearly, simple(CMod) is equivalent
to almost(CMod). Then, thanks to Proposition 5.11.5, we conclude that simple(CMod) is
equivalent to CMod.

Removing Vacuous Visibility Formulas
After proving the existence of a consistency model CMod in simple form equivalent to a

given one, we show how to transform it for obtaining an equivalent consistency model CMod
without vacuous visibility formulas (Lemma 5.11.7). We say that any such consistency model
is in basic normal form, extending Definition 5.6.1 to any consistency model whose visibility
formulas are described using Equation (5.15).

The following result, key to prove Lemma 5.11.7, it is a simple consequence of Defini-
tion 5.11.2 and Lemma 5.11.3.

Proposition 5.11.6. Let OpSpec be a maximally-layered operation specification, and let
CMod1,CMod2 be two consistency models s.t. CMod1 ̸≡OpSpec CMod2 but CMod1 ≼ CMod2.
There exists an abstract execution ξ valid w.r.t. CMod1, an object x and events w, r s.t.
w ∈ rspec(r)(x, [ξ,CMod2]) \ ctxtx(r, [ξ,CMod1]).

Proof. First of all, as CMod1 ̸≡OpSpec CMod2 but CMod1 ≼ CMod2, by Lemma 5.8.11,
there exists an abstract execution ξ valid w.r.t. CMod1, an object x and an event r
s.t. rspec(r)(x, [ξ,CMod2]) ̸= rspec(r)(x, [ξ,CMod1]). Thus, either rspec(r)(x, [ξ,CMod2]) \
rspec(r)(x, [ξ,CMod1]) ̸= ∅ or rspec(r)(x, [ξ,CMod1]) \ rspec(r)(x, [ξ,CMod2]) ̸= ∅.

On one hand, if rspec(r)(x, [ξ,CMod2]) \ rspec(r)(x, [ξ,CMod1]) ̸= ∅, by Property 1 of
Definition 5.11.2, then rspec(r)(x, [ξ,CMod2]) \ ctxtx(r, [ξ,CMod1]) ̸= ∅. On the other hand,
if rspec(r)(x, [ξ,CMod1]) \ rspec(r)(x, [ξ,CMod2]) ̸= ∅, by Property 2 of Definition 5.11.2,
rspec(r)(x, [ξ,CMod2]) \ ctxtx(r, [ξ,CMod1]) ̸= ∅.

Lemma 5.11.7. Let OpSpec be an operation specification. For every consistency model CMod
in simple form, there exists a OpSpec-equivalent consistency model, bnCModOpSpec, that is in
basic normal form w.r.t. OpSpec.

Proof. To prove the result, we construct a consistency model in basic normal form w.r.t.
OpSpec, bnCModOpSpec, that is OpSpec-equivalent to CMod. Without loss of generality we
can assume that CMod is ordered. Let α be an ordinal of cardinality |CMod|. We denote by
vi, 0 ≤ i < α to the i-th visibility formula in CMod7.

We construct a sequence of nested consistency models CModk, 0 ≤ k ≤ α s.t. (1) CModk
is OpSpec-equivalent to CMod, (2) CModk is more succinct than CModi (i.e., for every i < k,

7Without loss of generality, we can assume that limit ordinals in α are not associated to a visibility formula
.
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vi ∈ CModk iff vi ∈ CModi and for every i > k, vi ∈ CModk), and (3) the first k visibility
formulas of CModk are simple and non-vacuous w.r.t. (CModk,OpSpec) (i.e., for every i, 0 ≤
i < k, if vi ∈ CModk, then CModk \ {vi} ̸≡OpSpec CMod).

We construct such sequence using transfinite induction. The base case, k = 0, corresponds
to CMod0 = CMod, which trivially satisfies (1), (2) and (3). For the successor case, let
us assume that the property holds for the consistency model CModk, and let us prove it
for CModk+1. If CModk \ {vk} ≡OpSpec CMod, we denote CModk+1 as CModk \ {vk}; and
otherwise, CModk+1 = CModk.

Clearly, by construction of CModk+1, (1) and (2) immediately hold. For proving (3), we
observe that if vi ∈ CModk+1, vi ∈ CModi. In such case, CModi \ {vi} ̸≡OpSpec CMod. Hence,
by Lemma 5.8.11, there exists an abstract execution valid w.r.t. (CModi \ {vi},OpSpec) that
is not valid w.r.t. (CMod,OpSpec). As CModk+1 ⊆ CModi, CModk+1 \ {vi} ⊆ CModi \
{vi} and hence, CModk+1 \ {vi} ≼ CModi \ {vi}. Therefore, by Lemma 5.8.11, ξ is valid
w.r.t. (CModk+1 \ {vi},OpSpec). Thus, as ξ is not valid w.r.t. (CMod,OpSpec), CModk+1 \
{vi} ̸≡OpSpec CMod; so we conclude (3).

For the limit case, we define CModk as the intersection of all consistency models CModi, i <
k. We observe that in this case, (2) immediately holds by construction of CModk.

For proving (3) we observe that vi ∈ CModk iff vi ∈ CModi. In such case, CModi \
{vi} ̸≡OpSpec CMod; so by Lemma 5.8.11, there exists an abstract execution ξ valid w.r.t.
(CModi \ {vi},OpSpec) that is not valid w.r.t. (CMod,OpSpec). Similarly to the inductive
case, we deduce using Lemma 5.8.11 that ξ is valid w.r.t. (CModk \ {vi},OpSpec). Therefore,
we conclude that CModi \ {vi} ̸≡OpSpec CMod.

For proving (1), we reason by contradiction, assuming that CModk ̸≡OpSpec CMod and
reaching a contradiction. In such case, by Lemma 5.8.11 there exists an abstract execution
ξ = (h, rb, ar) valid w.r.t. (CModk,OpSpec) that is not valid w.r.t. (CMod,OpSpec). W.l.o.g.,
we can assume that ξ is minimal w.r.t. the number of events in it; and let len(ξ) the number
of events in such execution.

For each event r ∈ ξ, we define an ordinal i(r), i(r) < k associated to every visibility
formula vi, i < k that can be applied on ξ. First, we note that for every pair of events,
e, e′ and object x, if a visibility formula vx(e, e

′) holds in ξ, len(v) ≤ len(ξ). Observe that
there exists finite number of visibility formulas v in CMod with at most length len(ξ): on one
hand, for each j, 1 ≤ j ≤ len(v), Relvj is either so,wr, rb or ar. On the other hand, wrCons is
defined as a conjunction of predicates from a finite set. Thus, the number of possible visibility
formulas v of length len(v) ≤ len(ξ) is finite. Let ir be the biggest index of a visibility formula
vi ∈ CMod s.t. len(vi) ≤ len(ξ) and i < k; and let i(r) = ir + 1. Observe that k is a limit

ordinal, i(r) < k.
Let x be an object and r be an event in ξ. We show that ctxtx(r, [ξ,CModk]) =

ctxtx(r, [ξ,CModi(r)]). As CModk ⊆ CModi(r), ctxtx(r, [ξ,CModk]) ⊆ ctxtx(r, [ξ,CModi(r)]).
For showing ctxtx(r, [ξ,CModi(r)]) ⊆ ctxtx(r, [ξ,CModk]), let w ∈ ctxtx(r, [ξ,CModi(r)]). In
such case, there exists a visibility formula vi s.t. vi(w, r) holds in ξ. If i > k, by (2)
vi ∈ CModk. Otherwise, i < i(r), so by (2), vi ∈ CModi. Observe that in this case, applying
the induction hypothesis (2) on every consistency model CModj , j < k, vi ∈ CModj , we de-
duce that vi ∈ CModk. Either way, we deduce that w ∈ ctxtx(r, [ξ,CModk]). In conclusion,
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ctxtx(r, [ξ,CModk]) = ctxtx(r, [ξ,CModi(r)]).
We conclude a contradiction by showing that ξ is valid w.r.t. (CMod,OpSpec); which

by assumption it is not. Let e be the last event w.r.t. ar in ξ. For reaching such contra-
diction, as i(e) < k and CModi(e) ≡OpSpec CMod, it suffices to show that ξ is valid w.r.t.
(CModi(e),OpSpec). We show that wr−1

x (e′) = rspec(e′)(x, [ξ,CModi(e)]).
On one hand, if e′ = e, we note that ctxtx(e, [ξ,CModk]) = ctxtx(e, [ξ,CModi(e)]). As ξ is

valid w.r.t. (CModk,OpSpec), we conclude that rspec(e)(x, [ξ,CModi(e)]) = wr−1
x (e).

On the other hand, if e′ ̸= e, let ξ′ be the execution obtained by removing e from ξ.
By the minimality of ξ, ξ′ is valid w.r.t. (CMod,OpSpec). By induction hypothesis (1),
CMod ≡OpSpec CModi(e). Hence, ξ′ is valid w.r.t. (CModi(e),OpSpec). We thus deduce
that wr−1

x (e′) = rspec(e′)(x, [ξ,CModi(e)]). In conclusion, CModk satisfies (1) and thus, the
inductive step.

Finally, we define bnCModOpSpec = CModα. As CModα satisfies (1) and (3), it is
a consistency model OpSpec-equivalent to CMod composed of finite, non-vacuous w.r.t.
(CModα,OpSpec) visibility formulas; so we conclude that it is a consistency model in ba-
sic normal form.

Conflict-Strengthening a Consistency Model

Lemma 5.11.8. Let OpSpec be an operation specification. For every consistency model CMod
in basic normal form w.r.t. OpSpec there exists a OpSpec-equivalent consistency model that
is in normal form.

Proof. We transform CMod to define nCModOpSpec, a consistency model in normal form that
is OpSpec-equivalent to CMod.

For every visibility formula v ∈ CMod, we define v′ as the visibility formula that only
differs with v on its conflict predicate. More specifically, we require that for every set
E ∈ P(ε0, . . . εlen(v)), we require that conflict(E) ∈ v′ (resp. conflictx(E) ∈ v′) iff (1) for
every abstract execution ξ, every object x and every collection of events e0, . . . elen(v) s.t.
vx(e0, . . . elen(v)) holds in ξv, there exists an object y ̸= x s.t. if εi ∈ E, 0 ≤ i ≤ len(v), then
wspec(ei)(y, [ξ,CMod]) ↓ (resp. wspec(ei)(x, [ξ,CMod]) ↓) and (2) there is no strict superset
of E satisfying (1). We define nCModOpSpec as the set containing all such visibility formulas.
For conclude the result, we first prove that nCModOpSpec ≡OpSpec CMod for then deduce that
nCModOpSpec is indeed a consistency model in normal form.

We show that nCModOpSpec ≡OpSpec CMod. On one hand, as every visibility formula v′

enforces more conflicts than v, nCModOpSpec ≼ CMod. On the other hand, by the definition
of v′, for every abstract execution ξ, object x and events w, r, if v′x(w, r) holds in ξ, vx(w, r)
also holds in ξ. Altogether, we conclude that nCModOpSpec ≡OpSpec CMod.

To show that nCModOpSpec is a consistency model in normal form, we observe that by con-
struction, every visibility formula v ∈ nCModOpSpec is in simple form and it is conflict-maximal
w.r.t. OpSpec. Hence, it suffices to prove that every visibility formula v ∈ nCModOpSpec is
non-vacuous w.r.t. nCModOpSpec.

Let v′ be a visibility formula of nCModOpSpec. Observe that by construction of
nCModOpSpec, nCModOpSpec \ {v′} ≡ CMod \ {v}. Hence, as CMod \ {v} ̸≡OpSpec CMod,
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we deduce that nCModOpSpec \ {v′} ≡ CMod \ {v} ̸≡OpSpec CMod ≡ nCModOpSpec. In other
words, v′ is non-vacuous w.r.t. (nCModOpSpec,OpSpec).

5.11.2 Arbitration-Free Well-Formedness
As described in Section 5.8.1, a consistency model is arbitration-free if a OpSpec-equivalent
consistency model in normal form is arbitration-free. In Theorem 5.11.9, we present a result
that states that arbitration-free is well-defined, as either every OpSpec-equivalent consistency
model in normal form are arbitration-free or none.

Regarding notations, for a visibility formula v and i, 0 ≤ i ≤ len(v) we denote hereinafter
conflictsOf(v, i) ∈ P(P(ε0, . . . εlen(v))) to the sets of conflicts of εi in v, i.e. E ∈ conflictsOf(v, i)
iff εi ∈ E and conflict(E) ∈ v.

Theorem 5.11.9. Let OpSpec = (E, rspec, extract,wspec) be an operation specification and
let CMod be a consistency model. For every pair of consistency models in normal form n1, n2
that are OpSpec-equivalent to CMod, n1 is arbitration-free iff n2 is arbitration-free.

Proof. We prove the result by contradiction, assuming that there exists two consistency mod-
els n1, n2 in normal form, OpSpec-equivalent to CMod, but one of them arbitration-free and
the other one no. W.l.o.g., we can assume that n1 is arbitration-free and n2 is not. On one
hand, as n2 is not arbitration-free w.r.t. OpSpec, there exists a visibility formula v ∈ n2 s.t.
v is not arbitration-free. We construct an abstract execution that is valid w.r.t. (n1,OpSpec)
but not valid w.r.t. (n2,OpSpec) using v, reaching a contradiction.

First of all, observe that by Lemma 5.6.4, n1 is weaker than CC. The abstract execution
we construct contains a collection events e0, . . . elen(v)s.t. ξ is valid w.r.t. (CC,OpSpec) and
vx(e0, . . . elen(v)) holds on it; for some object x.

Let x be an object. For each set E ∈ P(ε0, . . . elen(v)) we consider a distinct object yE , also
distinct from x. These objects represents each different conflict in v in an explicit manner.

We denote by Ex ∈ P(ε0, . . . elen(v)) to the set s.t. conflictx(Ex) ∈ v. Also, for every i, 0 ≤
i ≤ len(v), we denote by Xi to the set containing objects yE (resp. x) iff E ∈ conflictsOf(v, i)
(resp. Ex ∈ conflictsOf(v, i)). We denote by X to the union of sets Xi, 0 ≤ i ≤ len(v).

For obtaining ξ, we construct a sequence of executions ξi, 0 ≤ i ≤ len(v) inductively,
starting from an initial event init, and incorporating at each time a new event ei. We use
the notation h−1 and ξ−1 to describe the history and abstract execution containing only init
respectively. We use the convention e−1 = init, conflictsOf(v,−1) = Keys and x̃−1 = o−1 = x
(the usage of such conventions will be clearer later).

For the inductive step, we assume that the abstract execution ξi−1 = (hi−1, rbi−1, ar−1)
associated to the history hi−1 = (Ei−1, soi−1,wri−1) contains events e−1 . . . ei−1 and is well-
defined (satisfies Definition 5.3.4) and we construct the history hi and the abstract execution
ξi. First of all, we impose the constraint that if i > 0, then ri = ri−1 iff Relvi = so, and
otherwise ri ̸= rj , 0 ≤ j < i.

Also, we define a pair of special objects, x̃i and oi. The purpose of object x̃i is control
the number of events in ξ that write object x. Equation (5.56) describes x̃i; where choice is
a function that deterministically chooses an element from a non-empty set. The object oi is
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an object different from objects x, yE , E ∈ P(ε0, . . . εlen(v)) and oj ,−1 ≤ j < i that we use for
ensuring that if Relvi = wr, then (ei−1, ei) ∈ wr.

x̃i =


x̃i−1 if Xi = ∅
x if Xi ̸= ∅ and x ∈ Xi

choice (Xi) if Xi ̸= ∅ and x ̸∈ Xi

(5.56)

We select a domain Di, a set of objects Wi,Wi ⊆ Di that event ei must write, and a
set of objects Ci ⊆ Di whose value needs to be corrected for ei in ξi+1 – in the sense of
Definition 5.8.13. We distinguishing between several cases:

• i = 0 or 0 < i ≤ len(v) and Relvi ̸= wr and conflictsOf(v, i) ̸= ∅: In this case, we select ei
to be a write event. If OpSpec only allows single-object atomic read-write events, we
define Di = Xi; while if not, we consider a domain containing oi−1, oi, every object in
Xi but no object from X \Xi nor objects oj , 0 ≤ j < len(v), j ̸= i− 1, i. Observe that
by Proposition 5.11.10, such domain always exist on OpSpec.

If there is an unconditional write event whose domain is Di, we define Wi = Di. Oth-
erwise, we define Wi = Xi ∪ {oi}.

• 0 < i ≤ len(v), Relvi = wr and conflictsOf(v, i) ̸= ∅: In this case, by Proposition 5.11.11,
OpSpec allows atomic read-write events. If OpSpec only allows single-object atomic read-
write events, we define Di = Xi; while if not, we consider a domain containing oi−1, oi,
every object in Xi but no object from X \Xi nor objects oj , 0 ≤ j < len(v), j ̸= i− 1, i.
Observe that by Proposition 5.11.10, such domain always exist on OpSpec.

Similarly to the previous case, if there is an unconditional atomic read-write event whose
domain is Di, we define Wi = Di. Otherwise, we define Wi = Xi ∪ {oi}.

• 0 < i ≤ len(v) and conflictsOf(v, i) = ∅: In this case, by Proposition 5.11.11, OpSpec
allows events that do not unconditionally write. If OpSpec allows read events that are
not write events, we selectDi to be the domain of any such event andWi = ∅. Otherwise,
OpSpec must allow conditional write events; so we select Di to be the domain of any
such event, Wi = ∅. Observe that in this case, thanks to the assumptions on OpSpec
(see Section 5.8.4), we can assume without loss of generality that whenever oi−1 ∈ Di−1,
oi−1 ∈ Di as well; while otherwise, that x̃i−1 ∈ Di.

Finally we describe the event ei thanks to the sets Di and Wi. If Wi = Di and Relvi = wr,
we select an unconditional atomic read-write event whose domain is Di. If Wi = Di and
Relvi ̸= wr, we select an unconditional write event whose domain is Di. If Wi = ∅ and
OpSpec allows read events that are not write events, we select a read event whose domain is
Di. Finally, if that is not the case, we select a conditional write event ei s.t. obj(ei) = Di

and s.t. an execution-corrector exists for (ei,Wi, x̃i, ξ
i−1 ⊕ ei). Such event always exists by

the assumptions on operation specifications (Section 5.8.4). W.l.o.g. we can assume that ei
happens on replica ri.
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For concluding the description of hi = (Ei, so
i,wri) and ξi = (hi, rbi, ari), we use an

auxiliary history and abstract execution, hi0 = (Ei
0, so

i
0,wr

i
0) and ξi0 = (hi0, rb

i
0, ar

i
0) respec-

tively. For describing the write-read dependencies of ei in ξ0i , we define the context mapping
ci : Keys → Contexts, associating each object y to the context ci(y) described in Equa-
tion (5.57).

ci(y) = (F i(y), rbi−1
↾F i(y)×F i(y)

, ari−1
↾F i(y)×F i(y)

) (5.57)

where F i(y) is the mapping associating each object y with the set of events described below:

F i(y) =


{init} if i = 0

or if 0 < i ≤ len(v) ∧ Reli = ar{
e ∈ Ei−1

∣∣∣∣ wspec(e)(y, [ξi−1, CC]) ↓ and
(e, ei−1) ∈ (rbi−1)∗

}
otherwise

Then, we define ξi0 as the abstract execution of the history hi0 = (Ei
0, so

i
0,wr

i
0) obtained by

appending ei to hi0 and ξi0 as follows: Ei
0 contains Ei−1 and event ei. First of all, we require

that the relations soi0, wri0, rbi0 and ari0 contain soi−1, wri−1, rbi−1 and ari−1 respectively.
With respect to event ei, we impose that ei is the maximal event w.r.t. soi0 among those
on the same replica. Also, ei is maximal w.r.t. wr as we define that for every object z,
wri0

−1
z (ei) = rspec(ei)(z, ci(z)). For describing rbi0, we require that for every event e s.t.

(e, ei) ∈ soi0, (e, ei) ∈ rbi. Also, if Relvi = rb, we impose that (ei−1, ei) ∈ rbi0. Finally,
we require that for every pair of events e, e′ ∈ Ei−1 s.t. (e, e′) ∈ rbi−1 and (e′, ei) ∈ soi0,
(e, ei) ∈ rbi0. With respect to ari0, we impose that ei is the maximum event w.r.t. ar in ξi0.

We use ξi0 to construct ξi. If event ei is not a conditional write event, ξi = ξi0. Otherwise, if
event ei is a conditional write event, given Wi and object x̃i, we select an execution-corrector
for ei w.r.t. (CC,OpSpec) and ai. W.l.o.g., we assume that every event mapped by ai happens
on replica ri. Observe that by the choice of sets Di and Wi, and thanks to the assumptions
on storages (see Section 5.8.4), such event(s) are always well-defined.

In addition, we denote by Ci to the set of objects we need to correct for ei. More specif-
ically, if ei is a conditional write-read, we denote by Ci to the set of objects y s.t. ai(y) is
defined, i.e. Ci = {y ∈ Keys | ai(y) ↓}. In the case ei is not a conditional write-read, we use the
convention Ci = ∅. The set of events in ξi is the following: Ei = Ei−1∪{ei}

⋃
y∈Ci\{oi−1} ai(y).

Observe that by the choice of Ci, the set Ei is well-defined.
Concerning notations, we use c⊕ a to denote the context obtained by appending a to the

context c = {E, rb, ar} as the rb-maximum and ar-maximum event.

From ξi0, we define ξi = ξi0
seq(ai)
⋎ ei as the corrected execution of ξ and ei with events

ai. For describing ξi, we consider < to be a well-founded order over Keys. ξi satisfies the
following:

• soi: Let y ∈ Ci. We require that for every event e ∈ Ei−1, (e, ai(y)) ∈ soi iff rep(e) =
ri, 0 ≤ j < i. We also require that (init, ai(y)) ∈ soi and (ai(y), ei) ∈ soi. Finally, we
require that for every objects y′ ∈ Ci, y

′ < y, (ai(y′), ai(y)) ∈ soi.

163



Chapter 5. Arbitration-Free Consistency is Available (and Vice Versa)

• wri: Let y be an object in Ci. For every object z, if z ∈ Ci and z < y, we
require that (wriz)

−1(ai(y)) = rspec(ai(y))(z, c
i(z) ⊕ ai(z)); while otherwise, we re-

quire that (wriz)
−1(ai(y)) = rspec(ai(y))(z, c

i(z)). We also require that for every
object z, if z ∈ Ci, then (wriz)

−1(ei) = rspec(ei)(z, c
i(z) ⊕ ai(z)), while otherwise,

(wriz)
−1(ei) = rspec(ei)(z, c

i(z)).

• rbi: Let y ∈ Ci. We require that for every object y ∈ Ci and event e s.t. (e, ai(y)) ∈ soi∪
wri, (e, ai(y)) ∈ rbi. Also, if Relvi = rb, we impose that (ei−1, ai(y)) ∈ rbi. Finally, we
require that for every pair of events e, e′ ∈ Ei−1 s.t. (e, e′) ∈ rbi−1 and (e′, ai(y)) ∈ soi,
(e, ai(y)) ∈ rbi.

• ari: We impose that for every event e ∈ Ei−1, (e, ai(y)) ∈ ari, y ∈ Ci. We also require
that for every pair of objects y1, y2 ∈ Ci s.t. y1, y2, (ai(y1), ai(y2)) ∈ ari.

We then define hi = (Ei, soi,wri) and ξi = (hi, rbi, ari). Observe that by construction of
hi and ξi, they satisfy Definitions 5.3.2 and 5.3.4 respectively; so they are a history and an
abstract execution respectively. In particular, observe that ξi is a correction of the abstract
execution ξi−1

0 with events ai.
Finally, we define h = (E, so,wr) and ξ = (h, rb, ar) as, respectively, the history hlen(v) and

the abstract execution ξlen(v). We prove that ξ is the abstract execution we were looking for.
First, we show that ξ is valid w.r.t. n2: as ξ is valid w.r.t. (CC,OpSpec) (Corollary 5.11.13),

so by Lemma 5.6.4, it is valid w.r.t. (n1,OpSpec). As n1 ≡OpSpec n2, ξ is valid w.r.t.
(n2,OpSpec). Next, we deduce in Proposition 5.11.16 that OpSpec is maximally layered w.r.t.
ar. For proving such result, we rely on Propositions 5.11.14 and 5.11.15. Finally, we conclude
in Proposition 5.11.17 that the layer bound of rspec is bounded by the number of arbitration-
free suffixes of v. However, this implies that v is vacuous w.r.t. n2 (Proposition 5.11.18);
which is impossible by the choice of v. The contradiction arises from assuming that n1 is
arbitration-free but n2 is not; so we conclude the result.

Proposition 5.11.10. Let OpSpec be a storage that allows multi-object write (resp. read-
write) events whose domain is not Keys. Then, for every pair of finite disjoint sets F1, F2

there exists a domain D in OpSpec s.t. F1 ⊆ D but F2 ∩D = ∅.

Proof. The result is immediate as F1 is finite. Hence, by the assumptions on operation
specifications (Section 5.8.4), F1 is a domain on OpSpec.

Proposition 5.11.11. Let v be a visibility formula and i, 0 < i ≤ len(v). If conflictsOf(v, i) ̸=
∅ and Relvi = wr, OpSpec allows read-write events. If conflictsOf(v, i) = ∅ allows events that
do not unconditionally write.

Proof. Observe that as v is non-vacuous w.r.t. (CMod,OpSpec), CMod \ {v} ̸≡OpSpec CMod.
By Proposition 5.11.6, there exists an execution ξ valid w.r.t. CMod \ {v}, an object z and
events f0, . . . flen(v) s.t. vz(f0, . . . flen(v)) holds in ξ.

On one hand, if conflictsOf(v, i) ̸= ∅ and Relvi = wr, as ξ is valid w.r.t. CMod \ {v}, there
exists z s.t. rspec(fi)(z, [ξ,CMod \ {v}]) ̸= ∅. Also, conflictsOf(v, i) ̸= ∅ iff fi writes on some
object z′. Hence, fi is a read-write event.
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On the other hand, if conflictsOf(v, i) = ∅, as v is conflict-maximal w.r.t. OpSpec, event fi
does not necessarily write any object. Thus, OpSpec allows events that do not unconditionally
write.

Proposition 5.11.12. The abstract execution ξ described in Theorem 5.11.9 satisfies that for
every i, 0 ≤ i ≤ len(v):

1. For every object y ∈ Ci, the following conditions hold:

(a) For every object z ∈ Keys, if z ∈ Ci and z < y, G(ai(y), z) = F i(z)∪{ai(z)}, while
otherwise, G(ai(y), z) = F i(z).

(b) The execution ξi ↾ y is valid w.r.t. (CC,OpSpec).

2. For the event ei, the following conditions hold:

(a) For every object z, if z ∈ Ci, G(ei, z) = F i(z)∪{ai(z)}, while otherwise G(ei, z) =
F i(z).

(b) The execution ξi is valid w.r.t. (CC,OpSpec).

where ctxtz(e, [ξ, CC]) = (G(e, z), rb↾G(e,z)×G(e,z), ar↾G(e,z)×G(e,z)).

Proof. We prove the result by induction. In particular, we show that for every i,−1 ≤ i ≤
len(v) and object y, either (0) i = −1 or (1) and (2) hold. The base case, i = −1, is immediate
as (0) holds; so let us suppose that the result holds for every j,−1 ≤ j < i, and let us prove
it for i.

For proving the inductive step, we first prove (1) and then (2). As both (1) and (2) have
an identical proof (observe that the role of object y in the former is just to declare that event
ai(y) is well-defined), we present only the proof of (1).

We show (1) by transfinite induction. Let α be an ordinal of cardinality |Keys|. For every
k, 0 ≤ k ≤ α, we denote by Vk to the set containing the first k elements in Keys according to
<. We show that (1) holds for every y ∈ Vk ∩ Ci.

The base, V0 is immediate as V0 = ∅. We thus focus on the successor case (i.e., showing
that if (1) holds for every object y ∈ Vk ∩ Ci it also holds for Vk+1), as the limit case is
immediate: if k is a limit ordinal, Vk =

⋃
i,i<k Vi; so (1) immediately holds. For showing that

(1) holds for every object y ∈ Vk+1 ∩ Ci, as by induction hypothesis it holds for every object
y ∈ Vk ∩ Ci, it suffices to show it for the only object y ∈ Vk+1 \ Vi. W.l.o.g., we can assume
that y ∈ Ci; as otherwise the result is immediate.

We first prove (1a) and then we show (1b). Let z ∈ Keys be an object. Two cases arise
depending on Relvi .

On one hand, if i = 0 or i > 0 ∧ Relvi = ar, F i(z) = {init}. As init ∈ G(ai(y), z), it
suffices to show that the only non-initial event in E inG(ai(y), z) is ai(z) (whenever z ∈ Ci and
z < y). Observe that an event e belongs to G(ai(y), z) if wspec(e)(z, [ξ, CC]) ↓ and (e, ai(y)) ∈
rb+. As ai(y) ∈ Ei, by construction of ξ, e must belong to Ei, wspec(e)(z, [ξi, CC]) ↓ and
(e, ai(y)) ∈ (rbi)+.

Observe that as either i = 0 or 0 < i ≤ len(v) ∧ Relvi = ar, by definition of rbi, e ̸∈ Ei−1.
Thus, emust be an event in Ei\Ei−1. Observe that by construction of ξ, as (e, ai(y)) ∈ (rbi)+,
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such event must be an event ai(w), w ∈ Ci, w < y. As ξi = ξi0
ai
⋎ ei, by induction hypothesis

(1b), we deduce that ξi ↾ w is valid w.r.t. (CC,OpSpec). Hence, as wspec(ai(w))(z, [ξ
i, CC]) ↓,

we deduce thanks to Property 1 of Definition 5.8.13 that z = w – so z ∈ Ci and z < y.
On the other hand, if 0 < i ≤ len(v) ∧ Relvi ̸= ar, two sub-cases arise: z ∈ Ci, z < y

or not. Both cases are identical, so we present the former, i.e., if z ∈ Ci, z < y, then
F i(z) ∪ {ai(z)} = G(ai(y), z).

For proving that F i(z) ∪ {ai(z)} ⊆ G(ai(y), z), we split the proof in two blocks: showing
that F i(z) ⊆ G(ai(y), z) and showing that ai(z) ∈ G(ai(y), z).

For showing that F i(z) ⊆ G(ai(y), z), let e be an event in F i(z). In such case, to e ∈ Ei−1,
wspec(e)(z, [ξi, CC]) ↓ and (e, ei−1) ∈ (rbi)∗. By the construction of ξ, it is easy to see that any
such event belongs to Ei, wspec(e)(z, [ξ, CC]) ↓ and (e, ei−1) ∈ rb∗. As Relvi ̸= ar, we deduce
that (ei−1, ai(y)) ∈ rbi ⊆ rb. Hence, (e, ai(y)) ∈ rb+; so e ∈ G(ai(y), z). This show that
F i(z) ⊆ G(ai(y), z).

For showing that ai(z) ∈ G(ai(y), z), we observe that ξi = ξi0
ai
⋎ ei. As z < y, by induction

hypothesis (1b), ξi ↾ z is valid w.r.t. (CC,OpSpec). Thus, by Property 1 of Definition 5.8.13,
wspec(ai(z))(z, [ξ

i, CC]) ↓. Hence, wspec(ai(z))(z, [ξ, CC]) ↓. As z < y, (ai(z), ai(y)) ∈ soi ⊆
so; so we conclude that ai(z) ∈ G(ai(y), z).

We conclude the proof of the inductive step of (1a) by showing the converse i.e.
F i(z)∪{ai(z)} ⊇ G(ai(y), z). Let e ∈ G(ai(y), z). First of all, by the definition of Causal vis-
ibility formula (see Figure 5.4b), e ∈ G(ai(y), z) iff wspec(e)(z, [ξ, CC]) ↓ and (e, ai(y)) ∈ rb+.
Observe that if (e, ai(y)) ∈ rb+, by construction of ξ, such event must belong to Ei,
wspec(e)(z, [ξi, CC]) ↓ and (e, ai(y)) ∈ (rbi)+. We prove that if e ∈ Ei−1 then e ∈ F i(z),
while otherwise, if e ∈ Ei \ Ei−1, then e = ai(z).

If e ∈ Ei−1, as wspec(e)(z, [ξi, CC]) ↓, wspec(e)(z, [ξi−1, CC]) ↓. Also, as Relvi ̸= ar and
(e, ai(y)) ∈ (rbi)+, we deduce that (e, ei−1) ∈ (rbi−1)∗. In other words, e ∈ F i(z).

Otherwise, if e ∈ Ei \Ei−1, we note that by construction of ξ, the only events in Ei \Ei−1

s.t. (e, ai(y)) ∈ (rbi)+ are events ai(w), w ∈ Ci, w < y. As ξi = ξi0
seq(ai)
⋎ ei and z < y, ξi ↾ z is

valid w.r.t. (CC,OpSpec). Thus, as wspec(e)(z, [ξi, CC]) ↓, by Property 1 of Definition 5.8.13
we conclude that e = ai(z).

For concluding the inductive step, we show that (1b) holds. This is immediate by the
definition of wri: for every event e ∈ ξi ↾ y, by induction hypothesis (1a) or (2a) – depending
on whether e = ej or aj(w), where 0 ≤ j ≤ i, w ∈ Ci – (wri)−1

z (e) = rspec(e)(CC, [ξi ↾ y, z]).
Thus, ξi ↾ y is valid w.r.t. (CC,OpSpec).

A consequence of Proposition 5.11.12 is the following result.

Corollary 5.11.13. The abstract execution ξ described in Theorem 5.11.9 is valid w.r.t.
(CC,OpSpec).

Proposition 5.11.14. The predicate vx0(e0, . . . elen(v)) holds in the abstract execution ξ de-
scribed in Theorem 5.11.9.
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Proof. The proof is a simple consequence of ξ’s construction. To show that vx0(e0, . . . elen(v))
holds in ξ, we first show that for every i, 1 ≤ i ≤ len(v), (ei−1, ei) ∈ Relvi and to then prove
that wrConsvx(e0, . . . elen(v)) holds in ξ.

We prove that for every i, 1 ≤ i ≤ len(v), (ei−1, ei) ∈ Relvi . Four cases arise depending on
Relvi .

• Relvi = so: In this case, by construction of events ei−1, ei, we know that ri = ri−1. Hence,
(ei−1, ei) ∈ soi ⊆ so.

• Relvi = wr: In this case, we first show that there is an object y ∈ Di ∩Wi−1 \ Ci, and
then show that (ei−1, ei) ∈ wry. For showing the first part, we distinguish between cases
depending on whether oi−1 ∈ Di or not.

– oi−1 ∈ Di: In this sub-case, we show that y = oi−1. On one hand, if
conflictsOf(v, i) = ∅, by the choice of event ei, oi−1 ∈ Di−1 \ Ci. On the other
hand, if conflictsOf(v, i) ̸= ∅, as oi−1 ∈ Di, we deduce that OpSpec allows multi-
object read-write events. Observe that as v is conflict-maximal w.r.t. OpSpec,
conflictsOf(v, i− 1) ̸= ∅. Hence, as OpSpec allows multi-object read-write events,
we deduce that oi−1 ∈ Di−1 \ Ci. In both cases, as conflictsOf(v, i− 1) ̸= ∅ and
oi−1 ∈ Di−1, by the choice of Wi−1, we conclude that oi−1 ∈Wi−1.

– oi−1 ̸∈ Di: In this case, we show that y = x̃i. On one hand, if conflictsOf(v, i) =
∅, Xi = ∅; so by the choice of x̃i (see Equation (5.56)), x̃i = x̃i−1. By the
choice of Di, x̃i−1 ∈ Di \ Ci. Moreover, as v is conflict-maximal w.r.t. OpSpec,
conflictsOf(v, i− 1) ̸= ∅; so x̃i−1 ∈ Xi−1. By the choice of event ei−1, Xi−1 ⊆Wi−1.
Altogether, we conclude that x̃i ∈Wi−1.
On the other hand, if conflictsOf(v, i) ̸= ∅, we note that x̃i ∈ Di \Ci. As oi−1 ̸∈ Di,
we deduce that OpSpec only allows single-object read-write events. Thus, Di =
{x̃i}. As v is conflict-maximal w.r.t. OpSpec, we deduce that Xi ⊆ Xi−1. As by
the choice of ei−1, Xi−1 ⊆Wi−1, we conclude that x̃i ∈Wi−1.

We prove now that (ei−1, ei) ∈ wry. First, we show that ei−1 writes y in ξ. On one hand,
if ei−1 is an unconditional write event, wspec(ei−1)(y, c

i(y)) ↓. On the other hand, if
ei−1 is a conditional write event, as ξ is valid w.r.t. (CC,OpSpec) (Corollary 5.11.13) and
y ∈Wi, by Property 2 of Definition 5.8.13, we deduce that wspec(ei−1)(y, c

i(y)) ↓. Then,
as Relvi = wr, ei−1 ∈ F i(y). Observe that by construction of ξ, ei−1 is the ar-maximum
event in ci(y). We note that as y ̸∈ Ci, by Proposition 5.11.12, F i(y) = G(ei, y).
To sum up, ei−1 is the ar-maximum event in ctxty(ei, [ξ, CC]). As rspec is maximally
layered, we deduce that ei−1 ∈ rspec(ei)(y, [ξ, CC]). Finally, as ξ is valid w.r.t. CC
(Corollary 5.11.13), we conclude that (ei−1, ei) ∈ wry.

• Relvi = rb: In this case, we explicitly stated that (ei−1, ei) ∈ rbi ⊆ rb during the con-
struction of ξ.

• Relvi = ar: Similarly, by definition of ari, we know that (ei−1, ei) ∈ ari ⊆ ar.
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For showing that show that wrConsvx(e0, . . . elen(v)), we show that for every i, 0 ≤ i ≤ len(v)
and every set E ∈ conflictsOf(v, i), the event ei writes on object yE8. If ei is an unconditional
write, by the choice of ei, it writes on every object in Di. As yE ∈ Di, we conclude that
ei writes on yE . Otherwise, if ei is a conditional write, we observe that yE ∈ Wi. Hence,

as ξi = ξi0
seq(ai)
⋎ ei and ξi is valid w.r.t. (CC,OpSpec) (Proposition 5.11.12), we deduce using

Property 2 of Definition 5.8.13 that wspec(ei)(yE , [ξi, CC]) ↓. By construction of ξ, we conclude
that wspec(ei)(yE , [ξ, CC]) ↓.

Proposition 5.11.15. Let ξ be the abstract execution described in Theorem 5.11.9. For every
i, 0 ≤ i < len(v), if the εi suffix of v is non-arbitration-free, then (ei, elen(v)) ̸∈ rb+.

Proof. The proof is just an observation about the construction of ξ: for every j, 0 < j ≤ len(v),
(ej−1, ej) ∈ rb iff Relvi ̸= ar. Hence, (ei, elen(v) ∈ rb+) iff for every j, i < j ≤ len(v), Relj ̸= ar.
In particular, if the εi suffix of v is non-arbitration-free, then (ei, elen(v)) ̸∈ rb+.

Proposition 5.11.16. Let OpSpec be a storage, CMod be a consistency model in normal form
w.r.t. OpSpec and v be a visibility formula in CMod. If there exists an abstract execution
ξ = (h, rb, ar) valid w.r.t. CMod, an object x and events w, r s.t. vx(w, r) holds in ξ but
(w, r) ̸∈ (rb)+, then OpSpec is maximally layered w.r.t. ar.

Proof. First of all, as vx(w, r) holds in ξ, w ∈ ctxtx(r, [ξ,CMod]). If OpSpec would
be maximally layered w.r.t. (rb)+, rspec(r)(x, [ξ,CMod]) contains at least the first layer
of ctxtx(r, [ξ,CMod]) w.r.t. rb. Hence, there would exist an event w′ s.t. w′ ∈
rspec(r)(x, [ξ,CMod]) and (w,w′) ∈ (rb)+. As ξ is valid w.r.t. CMod, we deduce that
(w′, r) ∈ wr. By Definition 5.3.4, we deduce that (w′, r) ∈ rb. However, this implies that
(w,w′) ∈ rb+; which contradicts the assumptions. Hence, OpSpec must be maximally layered
w.r.t. ar.

Proposition 5.11.17. Let OpSpec be a storage maximally layered w.r.t. ar, CMod be a
consistency model in normal form w.r.t. OpSpec and v be a non-arbitration free visibility
formula in CMod. Let us suppose that there exists an abstract execution ξ = (h, rb, ar) valid
w.r.t. CMod, an object x and events e0, . . . elen(v) satisfying the following:

1. for every non-initial event e in ξ, if e ̸∈ {ei | 0 ≤ i ≤ len(v)}, then e does not write on
x in ξ,

2. vx(e0, . . . elen(v)) holds in ξ, and

3. for every non-arbitration-free εk-suffix of v, (ek, elen(v)) ̸∈ rb+.

In such case, the layer bound of OpSpec is bounded by the number of arbitration-free suffixes
of v.

8For simplifying the proof, we abuse of notation and say that yE = x if E = Ex. Observe that v is
conflict-maximal w.r.t. OpSpec, either conflictx(Ex) or conflict(Ex) do not belong to v.
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Proof. We reason by contradiction, assuming that k is bigger than the number of saturable
suffixes of v. We first show that rspec(elen(v))(x, [ξ,CMod]) contains less than k events in
{ei | 0 ≤ i < len(v)}, for then deduce that init ∈ rspec(elen(v))(x, [ξ,CMod]). After that, we
reach a contradiction by showing that e0 ∈ rspec(elen(v))(x, [ξ,CMod]) but (e0, elen(v)) ̸∈ wr;
which contradicts that ξ is valid w.r.t. CMod.

We first show that rspec(elen(v))(x, [ξ,CMod]) contains less than k events in {ei | 0 ≤ i <
len(v)}. As v contains less than k saturable suffixes, by the Assumption 3, there is less than
k events in {ei | 0 ≤ i < len(v)} that write on x in ξ and that succeed elen(v) w.r.t. rb+.
As wr ⊆ rb (see Definition 5.3.4), we deduce that wr−1

x (elen(v)) contains less than k events in
{ei | 0 ≤ i < len(v)}. As ξ is valid w.r.t. CMod, wr−1

x (elen(v)) = rspec(elen(v))(x, [ξ,CMod]); so
we prove the first part.

For showing that init ∈ rspec(elen(v))(x, [ξ,CMod]), we observe that by the Assumption 1,
no other non-initial event in ξ writes on x in ξ. Hence, rspec(elen(v))(x, [ξ,CMod]) contain less
than k non-initial events. As init ∈ ctxtx(elen(v), [ξ,CMod]), and OpSpec is maximally layered
with layer bound k, we conclude that init ∈ rspec(elen(v))(x, [ξ,CMod]).

For proving that e0 ∈ rspec(elen(v))(x, [ξ,CMod]) but (e0, elen(v)) ̸∈ wr, we observe that
by the Assumption 2, e0 ∈ ctxtx(elen(v), [ξ,CMod]). As OpSpec is maximally layered w.r.t.
ar, init ∈ rspec(elen(v))(x, [ξ,CMod]), (init, e0) ∈ ar and e0 ∈ ctxtx(elen(v), [ξ,CMod]); we
conclude that e0 ∈ rspec(elen(v))(x, [ξ,CMod]).

For reaching a contradiction, we observe that v is non-arbitration-free. Hence, by the
Assumption 3, (e0, elen(v)) ̸∈ rb. Once again, as wr ⊆ rb (see Definition 5.3.4), we deduce that
e0 ̸∈ wr−1

x (elen(v)). However, as e0 ∈ rspec(elen(v))(x, [ξ,CMod]), we conclude that ξ is not
valid w.r.t. CMod; which is contradicts the hypothesis. Thus, the layer bound of OpSpec is
bounded by the number of arbitration-free suffixes of v.

Proposition 5.11.18. Let OpSpec = (E, rspec, extract,wspec) be an operation specification
maximally layered w.r.t. ar, CMod be a consistency model in normal form w.r.t. OpSpec and
v be a simple, conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility formula. If the
layer bound of rspec is smaller or equal by the number of arbitration-free suffixes of v, then
v ̸∈ CMod.

Proof. Let v be a simple, conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility for-
mula. We show that v is vacuous w.r.t. CMod; so v ̸∈ CMod.

We reason by contradiction, assuming that v is non-vacuous w.r.t. CMod. In such case,
CMod \ {v} ̸≡OpSpec CMod but CMod \ {v} ≼ CMod. By Proposition 5.11.6, there exists
an abstract execution on OpSpec, and object x, and events w, r s.t. rspec(r)(x, [ξ,CMod]) \
ctxtx(r, [ξ,CMod \ {v}]).

We observe that by Property 2 of Definition 5.8.4, w ∈ ctxtx(r, [ξ,CMod]). Hence, as
w ∈ ctxtx(r, [ξ,CMod]) \ ctxtx(r, [ξ,CMod \ {v}]), we deduce that vx(w, r) holds in ξ. As v is
simple, there exist events e0, . . . elen(v) s.t. e0 = w, elen(v) = r and vx(e0, . . . elen(v)) holds in ξ.

First of all, as rspec is maximally layered w.r.t. ar and e0 ∈ rspec(elen(v))(e0, [ξ,CMod]),
every event in {e0, . . . elen(v)} that writes x is also in rspec(elen(v))(e0, [ξ,CMod]). As v is
conflict-maximal w.r.t. OpSpec, at least |Ex| events write on x; where Ex ∈ P(ε0, . . . elen(v))
s.t. conflictx(Ex) ∈ v. Observe that for every event ei s.t. εi ∈ Ex and suffx(vx, i) is
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arbitration-free, as CMod is closed under causal suffixes, there exists a visibility formula
v′ ∈ CMod s.t. v′x(ei, elen(v)). Thus, |Ex| ≥ af(v), where af(v) is the number of arbitration-

free suffixes of v. Moreover, as e0 ∈ rspec(elen(v))(e0, [ξ,CMod]), and v is not arbitration-free,
|Ex| > af(v). However, as the layer bound of rspec, k, is smaller or equal than the number
of arbitration-free suffixes of v, the number of events read by flen(v) is at most af(v). Hence,
|Ex| ≤ af(v), which contradicts that |Ex| > af(v). We reach a contradiction; so the initial
hypothesis, that v is non-vacuous w.r.t. CMod, is false. Thus, v ̸∈ CMod.

5.12 Proof of the Arbitration-Free Consistency Theorem
Lemmas 5.12.1 and 5.10.2 prove the AFC theorem.

5.12.1 Arbitration-Freeness Implies Availability
The proof of (1) =⇒ (2), essentially coincides with that of Lemma 5.6.6: we present an
available Spec-implementation that guarantees CC. As in Lemma 5.6.6, CMod is arbitration-
free, so by Lemma 5.6.4, this implies that CMod is weaker than CC. Thanks to Lemma 5.8.11,
any implementation of CC also ensures CMod.

Lemma 5.12.1 ((1) =⇒ (2)). Let OpSpec be a basic operation specification. There exists
an available (CC,OpSpec)-implementation.

Proof. The main difference in the construction w.r.t. the implementation shown in
Lemma 5.6.6 corresponds to the transition function, ∆i. More specifically, the main and
only change arise in Equation (5.8), which is substituted by Equation (5.58).

Mt(e) = [x 7→ rspec(e)(x,Ex
t (e))]x∈Keys

Ex
t (e) =

{
e′
∣∣∣∣ e′ ∈ Events ∩ t ∧ e′ writes x in exec(t) ∧
(rep(e′) = rep(e) ∨ rect(e

′, e))

}
arte = ar↾Ex

t (e)×Ex
t (e)

(5.58)

Is immediate to show that IE is a storage implementation. Showing that IE is an available
Spec-implementation is done as in Lemma 5.6.6. Observe that Lemmas 5.7.2 and 5.7.3 apply
to this implementation; so (Si, Ai, s

i
0,∆i) is an available implementation. In Lemma 5.12.2 we

show that indeed IE is an implementation of (CC,Spec), concluding the result.

Lemma 5.12.2. The implementation IE is an implementation of Spec′ = (CC,OpSpec).

Proof. Let PE = (Sp, Ap, s
p
0,∆p) be a program. We prove by induction on the length of all

traces in TPE∥IE that any trace t is valid w.r.t. Spec′. The base case, when t contains a single
action, is immediate as such action corresponds to the initial event, which does not read any
object. Let us assume that for any trace t′ ∈ TPE∥IE of at most length k, exec(t′) is valid
w.r.t. Spec′; and let us show that for any trace t of length k + 1, exec(t) is also valid w.r.t.
Spec′.

Let h = (E, so,wr) and ξ = (h, rb, ar) be respectively the history history(t) and the abstract
execution exec(t). We denote sr to the induced order between send-receive actions with the
same metadata on t. For proving that ξ is valid w.r.t. Spec′, we first prove that ξ is indeed
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an abstract execution, i.e., ξ satisfies Definition 5.3.4. In particular, by the construction of
(Si, Ai, s

i
0,∆i) (compared with that of Lemma 5.7.1), it suffices showing that wr ∪ so ⊆ rb.

By definition of rb, so ⊆ rb, so we focus on proving that wr ⊆ rb. Let w, r be events
and x be an object s.t. (w, r) ∈ wrx. In such case, there is a pair of actions ar, aw s.t.
r ∈ ar, w ∈ aw and w ∈ wr-Set(ar)(x). Hence, w ∈ rspec(r)(x,Ex

t (r)). We deduce then that
rect(w, r) must hold; which implies that there exists a send action s and a receive action v
s.t. rb-Set(s) = rb-Set(v) and w <t s <t v <t r. By sendAllData predicate, w ∈ rb-Set(s); so
by minRcv, w ∈ rb-Set(v). By the induced abstract execution definition, (w, r) ∈ rb.

Finally, we show that ξ is valid w.r.t. Spec′. By Definition 5.8.8, it suffices to show that for
every event r and object x, wr−1

x (r) = rspec(r)(x, ctxtx(r, [ξ, CC])). Let r be a read event, x be
an object and p = prefix(t, r). We know by Equation (5.58) that wr−1

x (r) = rspec(r)(x,Ex
p (r)).

Observe that by Equation (5.58) and rb’s definition, Ex
p (r) coincides with ctxtx(r, [t, CC]).

Thus, so we conclude that wr−1
x (r) = rspec(r)(x, ctxtx(r, [t, CC])).

5.12.2 Availability Implies Arbitration-Freeness
The proof of this result mimics that of Lemma 5.6.7. We prove the contrapositive: if CMod
is not arbitration-free, then no available Spec-implementation exists. Indeed, if CMod is
not arbitration-free, every normal form CMod′ of CMod contains a simple visibility for-
mula involving ar, and such formula precludes the existence of an available (CMod,OpSpec)-
implementation (see Lemma 5.10.2).

Lemma 5.10.2. Let Spec = (CMod,OpSpec) be a storage specification. Assume that CMod
contains a simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some
i, 0 ≤ i ≤ len(v), Relvi = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proof. We assume by contradiction that there is an available implementation IE of Spec
but CMod contains a visibility formula v non-vacuous w.r.t. OpSpec s.t. for some i, 0 ≤
i ≤ len(v), Relvi = ar. We use the latter fact to construct a specific program, which by
the assumption, admits a trace (in the composition with this implementation) that contains
no receive action. We show that any abstract execution induced by this trace, which is
admissible by any available implementation of Spec, is not valid w.r.t. Spec. This contradicts
the hypothesis.

The program P we construct generalizes the litmus program presented in Figure 5.1. P
uses two replicas r0, r1, two distinguished objects x0, x1 and a collection of events exl

i , 0 ≤ i ≤
len(v), l ∈ {0, 1}. The events are used to “encode” two instances of vx0 and vx1 .

Let dv be the largest index i s.t. Relvi = ar (last occurrence of ar). Then, v is formed
of two parts: the path of dependencies from ε0 to εdv which is not arbitration-free, and the
suffix from εdv up to εlen(v), the arbitration-free part.

For ensuring that vx(exl
0 , . . . e

xl
n ) holds in an induced abstract execution of a trace without

receive actions, we require that if Relvi = wr, then exl
i−1 is a write event and exl

i is a read
event. For ensuring that wrConsvx(e0, . . . elen(v)) holds in such abstract execution, we consider
a distinct object yE , also distinct from x0, x1. These objects represents each different conflict
in v in an explicit manner. Intuitively, we require that events exl

i write on object yE (resp.
xl) iff εi ∈ E.
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More formally, we denote by Ex ∈ P(ε0, . . . elen(v)) to the set s.t. conflictx(Ex) ∈ v. Also,
for every i, 0 ≤ i ≤ len(v), l ∈ {0, 1}, we denote by Xxl

i to the set containing objects yE (resp.
x̂xl
i ) iff E ∈ conflictsOf(v, i) (resp. Ex ∈ conflictsOf(v, i)); where x̂xl

i = xl if i < dv and x1−l

otherwise. We denote by X to the union of sets Xxl
i , 0 ≤ i ≤ len(v), l ∈ {0, 1}.

In the construction, we require that replica rl executes events exl
i if i < dv and events

e
x1−l

i otherwise – the replica rl executes the non arbitration-free part of v for object xl and
the arbitration-free suffix of v for x1−l. We denote by rxl

i to such replica.
More in detail, we construct a set of events, Ei, histories, hi = (Ei, soi,wri), and execu-

tions, ξi = (hi, rbi, ari), 0 ≤ i ≤ len(v) inductively, starting from an initial event init, and
incorporating at each time a pair of new events, ex0

i and ex1
i . We use the notation h−1 and

ξ−1 to describe the history and abstract execution containing only init respectively. For
simplifying notation, we use the convention init = ex0

−1 = ex1
−1.

For the inductive step, we assume that the abstract execution ξi−1 = (hi−1, rbi−1, ar−1)
associated to the history hi−1 = (Ei−1, soi−1,wri−1) contains events ex0

−1 . . . e
x0
i−1, e

x1
i−1 and

is well-defined (satisfies Definition 5.3.4) and we construct the history hi and the abstract
execution ξi.

The construction of ξi follows the structure of that constructed in Lemma 5.6.7’s proof,
but with the technical details of that used in Theorem 5.11.9’s proof.

For the inductive step, we assume that the abstract execution ξi−1 = (hi−1, rbi−1, ar−1)
associated to the history hi−1 = (Ei−1, soi−1,wri−1) contains events ex0

−1 . . . e
x0
i−1e

x1
i−1 and is

well-defined (satisfies Definition 5.3.4) and we construct the history hi and the abstract exe-
cution ξi.

In the following, let l ∈ {0, 1}.
Like in Theorem 5.11.9, we define a pair of special objects, x̃xl

i and oxl
i . The purpose

of object x̃xl
i is control the number of events in ξ that write object xl. Equation (5.59)

describes x̃xl
i ; where choice is a function that deterministically chooses an element from a

non-empty set. The object oxl
i is an object different from objects x, yE , E ∈ P(ε0, . . . εlen(v))

and oxl′
j ,−1 ≤ j < i, l′ ∈ {0, 1} that we use for ensuring that if Relvi = wr, then (ei−1, ei) ∈ wr.

W.l.o.g., we can assume that ox0
i ̸= ox1

i .

x̃xl
i =


x̃xl
i−1 if Xxl

i = ∅
x̂xl
i if Xxl

i ̸= ∅ and x̂xl
i ∈ Xxl

i

choice (Xi) if Xxl
i ̸= ∅ and x̂xl

i ̸∈ Xxl
i

(5.59)

We select a domain Dxl
i , a set of objects W xl

i ,W
xl
i ⊆ Dxl

i that event exl
i must write, and

a set of objects Cxl
i ⊆ Dxl

i whose value needs to be corrected for events ex0
i , e

x1
i in ξi+1 – in

the sense of Definition 5.8.13. We distinguishing between several cases:

• i = 0 or 0 < i ≤ len(v) and Relvi ̸= wr and conflictsOf(v, i) ̸= ∅: In this case, we select
exl
i to be a write event. If OpSpec only allows single-object atomic read-write events, we

define Dxl
i = Xxl

i ; while if not, we consider a domain containing oxl
i−1, o

xl
i , every object

in Xxl
i but no object from X \Xxl

i nor objects oxl′
j , 0 ≤ j < len(v), l′ ∈ {0, 1}j ̸= i−1, i.

Observe that by Proposition 5.11.10, such domain always exist on OpSpec.
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If there is an unconditional write event whose domain is Dxl
i , we define W xl

i = Dxl
i .

Otherwise, we define W xl
i = Xxl

i ∪ {oxl
i }.

• 0 < i ≤ len(v), Relvi = wr and conflictsOf(v, i) ̸= ∅: In this case, by Proposition 5.11.11,
OpSpec allows atomic read-write events. If OpSpec only allows single-object atomic read-
write events, we define Dxl

i = Xxl
i ; while if not, we consider a domain containing oi−1, oi,

every object in Xxl
i but no object from X \Xxl

i nor objects oj , 0 ≤ j < len(v), j ̸= i−1, i.
Observe that by Proposition 5.11.10, such domain always exist on OpSpec.

Similarly to the previous case, if there is an unconditional atomic read-write event whose
domain is Dxl

i , we define W xl
i = Dxl

i . Otherwise, we define W xl
i = Xxl

i ∪ {oxl
i }.

• 0 < i ≤ len(v) and conflictsOf(v, i) = ∅: In this case, by Proposition 5.11.11, OpSpec
allows events that do not unconditionally write. If OpSpec allows read events that are
not write events, we select Dxl

i to be the domain of any such event and W xl
i = ∅.

Otherwise, OpSpec must allow conditional write events; so we select Dxl
i to be the

domain of any such event, W xl
i = ∅. Observe that in this case, thanks to the assumptions

on OpSpec (see Section 5.8.4), we can assume without loss of generality that whenever
oxl
i−1 ∈ Di−1, oxl

i−1 ∈ Dxl
i as well; while otherwise, that x̃xl

i−1 ∈ Dxl
i .

Finally we describe the event exl
i thanks to the sets Dxl

i and W xl
i . If W xl

i = Dxl
i and

Relvi = wr, we select an unconditional atomic read-write event whose domain is Dxl
i . If

W xl
i = Dxl

i and Relvi ̸= wr, we select an unconditional write event whose domain is Dxl
i .

If W xl
i = ∅ and OpSpec allows read events that are not write events, we select a read event

whose domain is Dxl
i . Finally, if that is not the case, we select a conditional write event exl

i s.t.
obj(exl

i ) = Dxl
i and s.t. an execution-corrector exists for (exl

i ,W
xl
i , x̃

xl
i , ξ

i−1⊕ ex0
i ⊕ ex1

i ). Such
event always exists by the assumptions on operation specifications (Section 5.8.4). W.l.o.g.
we can assume that exl

i happens on replica rxl
i .

For concluding the description of hi = (Ei, so
i,wri) and ξi = (hi, rbi, ari), we use an

auxiliary history and abstract execution, hi−1 = (Ei
−1, so

i
−1,wr

i
−1) and ξi−1 = (hi−1, rb

i
−1, ar

i
−1)

respectively. For specifying wri−1, we define the context mapping ci : Keys→ Contexts in the
same fashion as in Theorem 5.11.9:

cxl
i (y) = (F xl

i (y), rbi−1

↾F
xl
i (y)×F

xl
i (y)

, ari−1

↾F
xl
i (y)×F

xl
i (y)

) (5.60)

where F xl
i (y) is the mapping associating each object y with the set of events described below:

F xl
i (y) =

{e ∈ Ei−1 | wspec(e)(y, [ξi−1, CC]) ↓ and (e, e
x1−l

i−1 ) ∈ (rbi−1)∗ } if i = dv
{e ∈ Ei−1 | wspec(e)(y, [ξi−1, CC]) ↓ and (e, exl

i−1) ∈ (rbi−1)∗ } otherwise

Then, we define ξi−1 as the abstract execution of the history hi−1 = (Ei
−1, so

i
−1,wr

i
−1)

obtained by appending ex0
i , e

x1
i to hi−1 and ξi−1 as follows: Ei

−1 contains Ei−1 and events
ex0
i , e

x1
i . First of all, we require that the relations soi−1, wri−1, rbi−1 and ari−1 contain soi−1,

wri−1, rbi−1 and ari−1 respectively.
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With respect to events ex0
i , e

x1
i , we impose that exl

i is the maximal event w.r.t. soi−1 among
those on the same replica. Also, exl

i is maximal w.r.t. wr as we define that for every object z,
((wri−1)z)

−1(exl
i ) = rspec(exl

i )(z, cxl
i (z)). We also require that rbi−1 = soi−1. With respect to

ari−1, we impose that ex0
i succeeds every event in Ei w.r.t. ari−1 and that ex1

i is the maximum
event w.r.t. ar in ξi−1.

We use ξi−1 to construct ξi. If event exl
i is not a conditional write event, ξi = ξi−1.

Otherwise, if event exl
i is a conditional write event, given W xl

i and object x̃xl
i , we select

an execution-corrector for exl
i w.r.t. (CC,OpSpec) and axl

i . W.l.o.g., we assume that every
event mapped by axl

i happens on replica rxl
i . Observe that by the choice of sets Dxl

i and
W xl

i , and thanks to the assumptions on storages (see Section 5.8.4), such event(s) are always
well-defined.

In addition, we denote by Cxl
i to the set of objects we need to correct for exl

i . More
specifically, if exl

i is a conditional write-read, we denote by Cxl
i to the set of objects y s.t.

axl
i (y) is defined, i.e. Cxl

i = {y ∈ Keys | axl
i (y) ↓}. In the case exl

i is not a conditional
write-read, we use the convention Cxl

i = ∅. The set of events in ξi is the following: Ei =
Ei−1 ∪ ⋃l∈{0,1}({exl

i }
⋃

y∈Ci\{o
xl
i−1}

axl
i (y)). Observe that by the choice of Cxl

i , the set Ei is
well-defined.

From ξi−1, we define ξi = ξi0
seq(ai)
⋎ ei as the corrected execution of ξ and ex0

i , e
x1
i with events

ax0
i , a

x1
i . For describing ξi, we consider < to be a well-founded order over Keys. ξi satisfies

the following:

• soi: Let y ∈ Cxl
i . We require that for every event e ∈ Ei−1, (e, axl

i (y)) ∈ soi iff
rep(e) = rxl

i , 0 ≤ j < i. We also require that (init, axl
i (y)) ∈ soi and (axl

i (y), exl
i ) ∈ soi.

Finally, we require that for every objects y′ ∈ Cxl
i , y

′ < y, (axl
i (y′), axl

i (y)) ∈ soi.

• wri: Let y be an object in Cxl
i . For every object z, if z ∈ Cxl

i and z < y, we require
that (wriz)−1(axl

i (y)) = rspec(axl
i (y))(z, cxl

i (z)⊕axl
i (z)); while otherwise, we require that

(wriz)
−1(axl

i (y)) = rspec(axl
i (y))(z, cxl

i (z)). We also require that for every object z, if z ∈
Cxl
i , then (wriz)

−1(exl
i ) = rspec(exl

i )(z, cxl
i (z) ⊕ axl

i (z)), while otherwise, (wriz)−1(exl
i ) =

rspec(exl
i )(z, cxl

i (z)).

• rbi: Let y ∈ Cxl
i . We require that for every object y ∈ Cxl

i and event e s.t. (e, axl
i (y)) ∈

soi, s.t. (e, axl
i (y)) ∈ soi ∪ wri, (e, axl

i (y)) ∈ rbi.

• ari: We impose that for every event e ∈ Ei−1, (e, axl
i (y)) ∈ ari, y ∈ Cxl

i . We also require
that for every pair of objects y1, y2 ∈ Ci s.t. y1, y2, (axl

i (y1), a
xl
i (y2)) ∈ ari. As a tie-

breaker between events associated to x0 and x1, we require that for every pair of events
e ∈ {ex0

i , a
x0
i (y) | y ∈ Cx0

i }, e′ ∈ {ex1
i , a

x1
i (y) | y ∈ Cx0

i }, (e, e′) ∈ ari.

We then define hi = (Ei, soi,wri) and ξi = (hi, rbi, ari). Observe that by construction of
hi and ξi, as wri ⊆ rbi = soi, they satisfy Definitions 5.3.2 and 5.3.4 respectively; so they
are a history and an abstract execution respectively. Also, observe that ξi is the corrected

abstract execution of ξi−1 for events ex0
i , e

x1
i with events ax0

i , a
x1
i , i.e. ξi = ξi1 = ξi0

seq(a
x1
i )

⋎ ex1
i ,

where ξi0 = ξi−1

seq(a
x0
i )

⋎ ex0
i .
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Then, we define Eventsp = E len(v) as the set our program employs. The set Eventsp induces
the set of traces Tp.

We define the program P = (Sp, Ap, s
p
0,∆p), where initp = init and ∆p is the transition

function defined as follows: for every trace t ∈ Tp and event e ∈ Eventsp, ∆p(t, e) ↓ if and only
if e ̸∈ t and every event in Eventsp whose replica coincide with e and has smaller identifier
than e is included in t.

The rest of the proof, which proceeds as follows, essentially combines previous results
obtained while proving Lemma 5.6.7 and Theorem 5.11.9:

1. There exists a finite trace t of P ∥ IE that contains no receive action (Lemma 5.7.5)

2. The trace t induces a history hv = (E, so,wr) and an abstract execution ξv = (h, rb, ar)
where rb = so. As IE is valid w.r.t. Spec, ξv is valid w.r.t. Spec. Next, we prove that
since rb = so, events in ξv read the latests value w.r.t. so for any object. In particular,
we deduce that ξv is valid w.r.t. (CC,OpSpec) (Corollary 5.12.5).

3. Since ar is a total order, either (ex0
dv−1, e

x1
dv−1) ∈ ar or (ex1

dv−1, e
x0
dv−1) ∈ ar. W.l.o.g.,

assume that (ex0
dv−1, e

x1
dv−1) ∈ ar. By Proposition 5.12.6, we deduce that ex0

0 ∈
ctxtx0(e

x0

len(v), [ξv,CMod]). The proof is explained in Figure 5.9: if (ex0
dv−1, e

x1
dv−1) ∈ ar,

then all events ex0
i form a path in such way that vx0(e

x0
0 , . . . e

x0

len(v)) holds in ξv. If some
event exl

i is a conditional read-write event, the predicate conflictx(e
x0
0 , . . . e

x0

len(v)) holds
in ξv thanks to the corrector events Axl

i .

4. As ex0
0 ∈ ctxtx0(e

x0

len(v), [ξv,CMod]) but (ex0
0 , e

x0

len(v)) ̸∈ rb (no message is received), we
deduce in Proposition 5.11.16 that OpSpec is layered w.r.t. ar. By contrapositive,
if OpSpec would be layered w.r.t. rb, as ex0

0 ∈ ctxtx0(e
x0

len(v), [ξv,CMod]), there would
exist an event e s.t. (ex0

0 , e) ∈ rb and e ∈ rspec(ex0

len(v))(x0, [ξv,CMod]). However, as
rb = so, rep(ex0

0 ) = rep(e) = rep(ex0

len(v)) which is false because rep(ex0
0 ) = r0 and

rep(ex0

len(v)) = r1.

5. Since rspec is maximally layered, we can show that the layer bound of rspec is smaller
than or equal to the number of arbitration-free suffixes of v (Proposition 5.11.17). Ob-
serve that an event writes x0 only if it is init or is an event exl

i s.t. εi ∈ Ex and l = 0.
Any such index i corresponds to a suffix of v. By causal suffix closure, for any arbitration-
free suffix v′ of v there is a visibility formula that subsumes v′ in nCModOpSpec. As dv
is the maximum index for which Relvi = ar, the number of events writing x0 in replica
r1 distinct from init coincide with the number of arbitration-free suffixes of v. Hence,
as rspec is layered w.r.t. ar, if its layer bound would be greater than the number of
arbitration-free suffixes, ex0

len(v) would necessarily read x0 from init (other events writ-
ing x0 are in replica r0 and elen(v) only reads from events in r1). However, as rspec is
maximally-layered and ex0

0 succeeds init w.r.t. ar and rb+, we would conclude that
ex0

len(v) would also read x0 from ex0
0 . However, this is impossible as wr ⊆ rb = so but ex0

0

is in replica r0 and ex0

len(v) is in replica r1.
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6. Lastly, we show in Proposition 5.11.18 that if the layer bound of rspec is smaller
than or equal to the number of arbitration-free suffixes of v, then v is vacuous w.r.t.
OpSpec, which contradicts the fact that v is a visibility formula from the normal form
nCModOpSpec.

Proposition 5.12.3. The abstract execution ξlen(v) described in Lemma 5.10.2 satisfies that
for every i, 0 ≤ i ≤ len(v), l ∈ {0, 1}:

1. For every object y ∈ Cxl
i , the following conditions hold:

(a) For every object z ∈ Keys, if z ∈ Cxl
i and z < y, G(axl

i (y), z) = F xl
i (z) ∪ {axl

i (z)},
while otherwise, G(axl

i (y), z) = F xl
i (z).

(b) The execution ξil ↾ y is valid w.r.t. (CC,OpSpec).

2. For the event exl
i , the following conditions hold:

(a) For every object z, if z ∈ Cxl
i , G(exl

i , z) = F xl
i (z) ∪ {axl

i (z)}, while otherwise
G(exl

i , z) = F xl
i (z).

(b) The execution ξil is valid w.r.t. (CC,OpSpec).

where ctxtz(e, [ξ
len(v), CC]) = (G(e, z), rb↾G(e,z)×G(e,z), ar↾G(e,z)×G(e,z)).

Proof. The proof of this result essentially coincides with that of Proposition 5.11.12.
We prove the result by induction. In particular, we show that for every i,−1 ≤ i ≤ len(v)

and object y, either (0) i = −1 or (1) and (2) hold. The base case, i = −1, is immediate as
(0) holds; so let us suppose that the result holds for every j,−1 ≤ j < i, and let us prove it
for i.

For proving the inductive step, we first prove (1) for l = 0, then (2) for l = 0, and then
(1) and (2) for l = 1. As both (1) and (2) have an identical proof (observe that the role of
object y in the former is just to declare that event axl

i (y) is well-defined and the role of l is
to determine which session must be proven first), we present only the proof of (1) for l = 0.

We show (1) by transfinite induction. Let α be an ordinal of cardinality |Keys|. For every
k, 0 ≤ k ≤ α, we denote by Vk to the set containing the first k elements in Keys according to
<. We show that (1) holds for every y ∈ Vk ∩ Cx0

i .
The base, V0 is immediate as V0 = ∅. We thus focus on the successor case (i.e., showing

that if (1) holds for every object y ∈ Vk ∩ Cx0
i it also holds for Vk+1), as the limit case is

immediate: if k is a limit ordinal, Vk =
⋃

i,i<k Vi; so (1) immediately holds. For showing that
(1) holds for every object y ∈ Vk+1 ∩Cx0

i , as by induction hypothesis it holds for every object
y ∈ Vk ∩Cx0

i , it suffices to show it for the only object y ∈ Vk+1 \ Vi. W.l.o.g., we can assume
that y ∈ Cx0

i ; as otherwise the result is immediate.
We first prove (1a) and then we show (1b). Let z ∈ Keys be an object. Two cases arise:

z ∈ Ci, z < y or not. Both cases are identical, so we present the former, i.e., if z ∈ Cx0
i , z < y,

then F x0
i (z) ∪ {ax0

i (z)} = G(ax0
i (y), z).

For proving that F x0
i (z) ∪ {ax0

i (z)} ⊆ G(ax0
i (y), z), we distinguish whether i = dv or

not. However, the proof essentially coincides in both cases, so we present the case i = dv.
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We split the proof in two blocks: showing that F x0
i (z) ⊆ G(ax0

i (y), z) and showing that
ax0
i (z) ∈ G(ai(y), z).

For showing that F x0
i (z) ⊆ G(ax0

i (y), z), let e be an event in F x0
i (z). In such case,

e ∈ Ei−1, wspec(e)(z, [ξi, CC]) ↓ and (e, ex1
i−1) ∈ (rbi)∗. By the construction of ξ, it is easy

to see that any such event belongs to Ei, wspec(e)(z, [ξ, CC]) ↓ and (e, ex1
i−1) ∈ (rblen(v))∗. As

i = dv, we deduce that (ex1
i−1, a

x0
i (y)) ∈ rbi ⊆ rblen(v). Hence, (e, ax0

i (y)) ∈ (rblen(v))+; so
e ∈ G(ax0

i (y), z). This show that F x0
i (z) ⊆ G(ax0

i (y), z).

For showing that ax0
i (z) ∈ G(ax0

i (y), z), we observe that ξi0 = ξi−1

a
x0
i
⋎ ex0

i . We note
that as z < y, by induction hypothesis (1b), ξi0 ↾ z is valid w.r.t. (CC,OpSpec). Thus, by
Property 1 of Definition 5.8.13, wspec(ai(z))(z, [ξi0, CC]) ↓. Hence, wspec(ax0

i (z))(z, [ξi, CC]) ↓
and wspec(ax0

i (z))(z, [ξlen(v), CC]) ↓. As z < y, (ax0
i (z), ax0

i (y)) ∈ soi ⊆ solen(v); so we conclude
that ax0

i (z) ∈ G(ax0
i (y), z).

We conclude the proof of the inductive step of (1a) by showing the converse i.e. F x0
i (z)∪

{ax0
i (z)} ⊇ G(ax0

i (y), z). Let e ∈ G(ax0
i (y), z). First of all, by the definition of Causal

visibility formula (see Figure 5.4b), e ∈ G(ax0
i (y), z) iff wspec(e)(z, [ξ, CC]) ↓ and (e, ax0

i (y)) ∈
(rblen(v))+. Observe that if (e, ax0

i (y)) ∈ (rblen(v))+, by construction of ξlen(v), such event must
belong to Ei, wspec(e)(z, [ξi, CC]) ↓ and (e, ai(y)) ∈ (rbi)+. We prove that if e ∈ Ei−1 then
e ∈ F x0

i (z), while otherwise, if e ∈ Ei \ Ei−1, then e = ax0
i (z).

If e ∈ Ei−1, as wspec(e)(z, [ξi, CC]) ↓, wspec(e)(z, [ξi−1, CC]) ↓. Also, as i = dv and
(e, ax0

i (y)) ∈ (rbi)+, we deduce that (e, ex1
i−1) ∈ (rbi−1)∗. In other words, e ∈ F x0

i (z).
Otherwise, if e ∈ Ei \Ei−1, we note that by construction of ξlen(v), the only events in Ei \

Ei−1 s.t. (e, ax0
i (y)) ∈ (rbi)+ are events ax0

i (w), w ∈ Ci, w < y. As ξi0 = ξi−1

seq(a
x0
i )

⋎ ex0
i and z <

y, ξi0 ↾ z is valid w.r.t. (CC,OpSpec). Hence, wspec(e)(z, [ξi, CC]) ↓ iff wspec(e)(z, [ξi0, CC]) ↓.
Thus, by Property 1 of Definition 5.8.13 we conclude that e = ax0

i (z).
For concluding the inductive step, we show that (1b) holds. This is immediate by

the definition of wri: for every event e ∈ ξi ↾ y, by induction hypothesis (1a) or (2a)
– depending on whether e = e

xl′
j or a

xl′
j (w), where 0 ≤ j ≤ i, w ∈ Ci, l

′ ∈ {0, 1} –
(wri)−1

z (e) = rspec(e)(CC, [ξjl′ ↾ y, z]) = rspec(e)(CC, [ξil ↾ y, z]). Thus, ξi ↾ y is valid w.r.t.
(CC,OpSpec).

A consequence of Proposition 5.12.3 is the following result.

Corollary 5.12.4. The abstract execution ξ described in Lemma 5.10.2 is valid w.r.t.
(CC,OpSpec).

Corollary 5.12.5 is an immediate result from Corollary 5.12.4, obtained by simply observing
that rblen(v) = solen(v) = so = rb.

Corollary 5.12.5. The abstract execution ξv described in Lemma 5.10.2 is valid w.r.t.
(CC,OpSpec).

Proposition 5.12.6. For every l ∈ {0, 1}, if (exl
dv−1, e

x1−l

dv−1) ∈ ar, then the predicate
vx0(e

xl
0 , . . . e

xl

len(v)) holds in the abstract execution ξ = (h, rb, ar) described in Theorem 5.11.9.
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Proof. The proof of this result essentially coincides with that of Proposition 5.11.14.
The proof is a simple consequence of ξlen(v)’s construction. To show that vx0(e

xl
0 , . . . e

xl

len(v))

holds in ξ, we first show that for every i, 1 ≤ i ≤ len(v), (exl
i−1, e

xl
i ) ∈ Relvi and to then prove

that wrConsvx(e
xl
0 , . . . e

xl

len(v)) holds in ξ.
We prove that for every i, 1 ≤ i ≤ len(v), (exl

i−1, e
xl
i ) ∈ Relvi . Four cases arise depending on

Relvi .

• Relvi = so: In this case, by construction of events exl
i−1, e

xl
i , we know that rxl

i = rxl
i−1.

Hence, (exl
i−1, e

xl
i ) ∈ soi ⊆ so.

• Relvi = wr: In this case, we first show that there is an object y ∈ Dxl
i ∩W xl

i−1 \Cxl
i , and

then show that (exl
i−1, e

xl
i ) ∈ wry. For showing the first part, we distinguish between

cases depending on whether oxl
i−1 ∈ Dxl

i or not.

– oxl
i−1 ∈ Dxl

i : In this sub-case, we show that y = oxl
i−1. On one hand, if

conflictsOf(v, i) = ∅, by the choice of event exl
i , oxl

i−1 ∈ Dxl
i−1 \ Cxl

i . On the
other hand, if conflictsOf(v, i) ̸= ∅, as oxl

i−1 ∈ Dxl
i , we deduce that OpSpec

allows multi-object read-write events. Observe that as v is conflict-maximal,
conflictsOf(v, i− 1) ̸= ∅. Hence, as OpSpec allows multi-object read-write events,
we deduce that oxl

i−1 ∈ Dxl
i−1 \ Cxl

i . In both cases, as conflictsOf(v, i− 1) ̸= ∅ and
oxl
i−1 ∈ Dxl

i−1, by the choice of W xl
i−1, we conclude that oxl

i−1 ∈W xl
i−1.

– oxl
i−1 ̸∈ Dxl

i : In this case, we show that y = x̃xl
i . On one hand, if conflictsOf(v, i) = ∅,

Xxl
i = ∅; so by the choice of x̃xl

i (see Equation (5.59)), x̃xl
i = x̃xl

i−1. By the choice of
Dxl

i , x̃xl
i−1 ∈ Dxl

i \Cxl
i . Moreover, as v is conflict-maximal, conflictsOf(v, i− 1) ̸= ∅;

so x̃xl
i−1 ∈ Xxl

i−1. By the choice of event exl
i−1, X

xl
i−1 ⊆W xl

i−1. Altogether, we conclude
that x̃xl

i ∈W xl
i−1.

On the other hand, if conflictsOf(v, i) ̸= ∅, we note that x̃xl
i ∈ Dxl

i \ Cxl
i . As

oxl
i−1 ̸∈ Dxl

i , we deduce that OpSpec only allows single-object read-write events.
Thus, Dxl

i = {x̃xl
i }. As v is conflict-maximal, we deduce that Xxl

i ⊆ Xxl
i−1. As by

the choice of exl
i−1, X

xl
i−1 ⊆W xl

i−1, we conclude that x̃xl
i ∈W xl

i−1.

We prove now that (exl
i−1, e

xl
i ) ∈ wry. First, we show that exl

i−1 writes y in ξ. On one hand,
if exl

i−1 is an unconditional write event, wspec(exl
i−1)(y, c

xl
i (y)) ↓. On the other hand, if

exl
i−1 is a conditional write event, as ξ is valid w.r.t. (CC,OpSpec) (Corollary 5.12.5) and
y ∈ W xl

i , by Property 2 of Definition 5.8.13, we deduce that wspec(exl
i−1)(y, c

xl
i (y)) ↓.

Then, as Relvi = wr, i ̸= dv, so exl
i−1 ∈ F xl

i (y). Observe that by construction of ξ, exl
i−1 is

the so-maximum event in cxl
i (y). As every event in F xl

i (y) is so-related, we deduce that
exl
i−1 is the ar-maximum event in F xl

i (y). We note that as y ̸∈ Cxl
i , by Proposition 5.12.3,

F xl
i (y) = G(exl

i , y). Altogether, exl
i−1 is the ar-maximum event in ctxty(e

xl
i , [ξ

len(v), CC]).
As rblen(v) = rb, we conclude that exl

i−1 is the ar-maximum event in ctxty(e
xl
i , [ξ, CC]). As

rspec is maximally layered, we deduce that exl
i−1 ∈ rspec(exl

i )(y, [ξ, CC]). Finally, as ξ is
valid w.r.t. CC (Corollary 5.12.5), we conclude that (exl

i−1, ei) ∈ wry.
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• Relvi = rb: In this case, i ̸= dv. Then, rb = so and (exl
i−1, e

xl
i ) ∈ so, we conclude that

(exl
i−1, e

xl
i ) ∈ rb.

• Relvi = ar: On one hand, if i = dv, by hypothesis, (exl
i−1, e

xl
i ) ∈ ar. On the other hand, if

i ̸= dv, (exl
i−1, e

xl
i ) ∈ so. Thus, (exl

i−1, e
xl
i ) ∈ ar.

For showing that show that wrConsvx(e0, . . . elen(v)), we show that for every i, 0 ≤ i ≤ len(v)
and every set E ∈ conflictsOf(v, i), the event exl

i writes on object yE9. If exl
i is an unconditional

write, by the choice of exl
i , it writes on every object in Dxl

i . As yE ∈ Dxl
i , we conclude that exl

i

writes on yE . Otherwise, if exl
i is a conditional write, we observe that yE ∈ W xl

i . Hence, as

ξi0 = ξi−1

seq(a
x0
i )

⋎ ex0
i and ξi0 is valid w.r.t. (CC,OpSpec) (resp. ξi1 = ξi0

seq(a
x1
i )

⋎ ex1
i and ξi1 is valid

w.r.t. (CC,OpSpec)) (Proposition 5.12.3), we deduce using Property 2 of Definition 5.8.13 that
wspec(exl

i )(yE , [ξ
i, CC]) ↓. By construction of ξ, we conclude that wspec(exl

i )(yE , [ξ, CC]) ↓.

5.13 Related Work and Discussion
The CAP conjecture [36] claims that a distributed key-value store cannot be both consistent,
available and tolerate partitions. The proof of the CAP theorem [59], uses a so-called split
brain behavior, where two sets of replicas are isolated from each other, and a get (read)
operation misses the result of an earlier set (write) operation (which completes before the
get starts). We remark that our proof in section 5.2 actually extends the proof of the CAP
theorem so it holds without the real-time requirement used in the original proof [59].

As pointed by some critiques of the CAP theorem (e.g., [70]), the proof equates consistency
with atomicity of read / write variables. Moreover, network partitioning is a stand-in for end-
to-end delays in geo-distributed systems. The PACELC (if Partition then Availability or
Consistency, Else Latency or Consistency) theorem [3] (see [62]) captures these observations;
its proof extends results proved for sequential consistency [78, 18]. These results are also
proved for read / write variables, capturing key-value stores. In the executions we construct,
messages between replicas are delayed, in a way that corresponds to split brain behavior, and
our emphasis is on constructing the right interaction sequences. We believe this behavior can
be used to extend the AFC theorem so it talks about latency, rather than availability, for the
same interaction sequences.

The CALM (consistency as logical monotonicity) conjecture [65] relates monotonicity of
queries to lack of coordination. Informally, it states that a query has a coordination-free
execution strategy if and only if it is monotonic. In order to make this statement more
concrete, it is necessary do define what coordination freedom means. In their proof of the
CALM theorem, Ameloot et al. [15] equate coordination-freedom with the ability of clients
to produce an output even when there is no communication between replicas. The proof
relies on a split brain behavior, somewhat similar to the one used in the CAP theorem [59].
Extensions of this theorem [16] equip replicas with knowledge of the data distribution. The
CALM theorem is motivated, in part, by Bloom [14], a programming language that encourages
order-insensitive programming. The applications they present are to key-value stores and

9For simplifying the proof, we abuse of notation and say that yE = xl if E = Ex. Observe that v is
conflict-maximal, either conflictx(Ex) or conflict(Ex) do not belong to v.
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to a shopping cart, essentially, a counter. Later work extends the CALM approach to a
programming environment for composing small lattices [14], and relates it to CRDTs [74].

One key challenge in deriving our result is considering abstract, generic consistency models,
while prior work considers specific models. The other challenge is to allow their composition
with abstract, generic shared objects, while prior work mostly consider key-value stores. On
the possibility side, this is facilitated by the relating arbitration-freeness to causality; the
necessity side relies on finding carefully-designed client interactions that “stress” dependencies
between replicas.

Defining available implementations for causal consistency has been considered in several
works [21, 80, 82, 22]. The work of Attiya, Ellen, and Morrison [19] and Mahajan, Alvisi,
Dahlin, et al. [83] show that, in the case of multi-value registers, consistency models stronger
than causal consistency cannot support available implementations. In [19] the condition is
observable causal consistency (OCC) whereas in [83] the condition is real-time causal consis-
tency (RTC). The definition of both OCC and RTC are specific to multi-value registers, and
the impossibility result depends on several restrictions that we do not consider. Both papers
make some (nontrivial, but different) assumptions about the implementations. Furthermore,
both of them do not truly prove a tight result: while both [19, 83] prove the positive result for
CC, in [19], the impossibility is proved for OCC, and in [83] it is for RTC (both stronger than
CC). Besides handling a more general class of operations, the AFC theorem is a strengthening
of their results, as it applies to causal consistency and is therefore tight.

Our specification framework builds on previous work [40, 29, 41, 45]. Similarly to Bur-
ckhardt et al. [41, 40], storage system specifications decouple consistency from the object se-
mantics. We re-use the same ideas of defining consistency using visibility formulas, contexts,
and an arbitration relation. Our object semantics is split into several semantical functions
(rspec, extract, and wspec) in order to be more general (modeling transactions), and be able to
express “normal” constrains. The extension to transaction isolation levels is similar to Cerone,
Bernardi, and Gotsman [45] and Biswas and Enea [29].
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In this thesis, we provided a better understanding of distributed storage systems under differ-
ent consistency models. We now give a brief summary of the content presented in this work
and conclude with future research lines.

Conclusions
Reasoning about and correctly implementing weak consistency models presents significant
challenges. In Chapter 2, we presented an axiomatic semantics of weak consistency models,
inspired on the work of [29] that can provide a better understanding of isolation levels to
developers than previous work [9].

In Chapter 3, we presented the first DPOR SMC model-checking algorithm for checking
consistency on distributed key-value database with static set of keys under weak isolation
levels. We presented a generic class of DPOR SMC algorithms, called swapping-based algo-
rithms, and discussed explore-ce, a swapping based algorithm that is a sound, complete,
strongly optimal algorithm and employs polynomial memory for causally extensible isolation
levels (including Transactional Causal Consistency, Read Atomic and Read Committed iso-
lation levels). We also proved that no swapping based algorithm with those four properties
exists for Snapshot Isolation and Serializability. We then presented a optimal but not strongly
optimal variant of explore-ce for Snapshot Isolation and Serializability and evaluated its
performance on benchmarks from the literature.

In Chapter 4, we presented an axiomatic semantics for transactional SQL programs. For
describing behaviors of a program, we introduced the notion of client and full histories. We
studied the complexity of checking if a history is consistent w.r.t. its associated isolation
configuration. We showed that for full histories the results from [29] easily translate, while
for client histories the problem is in general NP-complete. This shows that handling SQL-
like semantics is strictly more complex than the standard read-write semantics. We also
presented an algorithm for checking consistency of a client history that is exponential on
worst-case scenarios but polynomial-time on relevant cases. We evaluated our algorithm on
benchmarks from the literature.

Finally, in Chapter 5 we proved the AFC theorem, i.e. that storage specifications have
an available implementation if and only if their consistency model is arbitration-free. For
that, we described a framework for defining consistency models that builds on [29], as well
as a framework for specifying operation semantics inspired by the work of [41]. It is the first
result of its kind taking into account both consistency constraints and the semantics of the
implemented storage.
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Future Work
In the follow-up work, we would like to explore some the following open questions.

• Among the isolation levels considered in [45, 29], those that can be checked in polynomial
time on static set of keys are exactly those that are causally extensible (see Section 3.3.2).
Whether such characterization can be extended to arbitrary isolation levels, for example
those defined as in Section 4.3, remains unknown.

• In [84], the authors explore a variant of TruSt algorithm [73] for mixed-size accesses,
and claim that the approach can be extended to the transactional case on databases.
While their approach is still not strongly optimal, the authors claim that the number
of explored inconsistent executions can be bounded with respect to the number of con-
current clients of the program. However, the authors present an algorithm that explore
consistent executions, unlike Algorithm 1 that reduce the state space by exploring histo-
ries. Whether both approaches can be combined for minimizing the impact of not being
able to obtain strong optimality while retaining the benefits of history-based algorithms
is not yet studied.

• Algorithm 1 is a DPOR SMC algorithm designed only for databases with static sets of
keys. Analyzed histories in this context can be reinterpreted under SQL as full histories
with specific WHERE clauses only querying one key at a time. Seems reasonable to assume
that Algorithm 1 can be easily adapted to full histories with SQL-like transactions.

However, as discussed in Section 3.7, the bottleneck of Algorithm 1 is the number of
explored histories. In general, multiple full histories are witnesses of the same client
history; and in comparison with Algorithm 1, the running time of Algorithm 8 are
almost negligible (see Section 4.6). It remains unknown whether Algorithm 1 can also
be extended to the case of client histories and its scalability in such case.

• Algorithms 7 and 8 can be only applied to some specific set of isolation levels. In
particular, they cannot handle Transactional Causal Consistency. How can they be
adapted to handle other isolation levels it is still not explored.

• The running time of Algorithm 7 depends on the number of possible consistent prefixes.
Such exploration determines the commit order used for checking consistency. How-
ever, it is not always necessary computing a total order for checking consistency. For
example, in the case of heterogeneous isolation configuration with only k transactions
running Serializability, we can deduce consistency based on k partial orders, that are
total orders when restricted to the k Serializable transactions. The complexity analysis
of an algorithm with respect to some external parameter k is a classic question from
the parametrized complexity field. Whether the benefits of such field can help us to
improve our algorithms, both theoretically and effectively, remains an open question.

• The AFC theorem (Theorem 5.10.1) is incomparable with other well-known results
such as [19]. The constraints imposed on the storage specifications do not apply on
those. It remains unexplored whether relaxing our conditions for accepting a wider
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range of storage specifications, without substantially change the result, may subsume
the aforementioned work.

• The extension of the CALM theorem to CRDTs [74] suggest that it can also be ex-
tended to arbitrary storage systems. Our AFC theorem shows that coordination-free
implementations of storage specifications should enforce an arbitration-free consistency
model. However, it is unclear how monotonicity translates to arbitrary operation spec-
ifications, and whether CALM theorem can be extended to storage specifications with
consistency models weaker than Causal Consistency.
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